
Developer’s Notes

Siconos Development Team

March 14, 2018

Contents

1 OneStepNSProblem formalisation for several interactions 4
1.1 LinearDS - Linear Time Invariant Relations . 4

1.1.1 General notations . 4
1.1.2 A simple example . 6
1.1.3 relative degree . 7

1.2 LagrangianDS - Lagrangian Linear Relations . 7
1.2.1 General notations . 7

1.3 Block matrix approach . 9
1.3.1 Block matrix of DS . 9
1.3.2 Block matrix of interaction . 9
1.3.3 OSNSProblem using block matrices . 9

2 Dynamical Systems formulations in Siconos. 10
2.1 Class Diagram . 10
2.2 General non linear first order dynamical systems

→ class DynamicalSystem . 10
2.3 First order linear dynamical systems→ class LinearDS . 11
2.4 Second order non linear Lagrangian dynamical systems

→ class LagrangianDS . 11
2.5 Second order linear and time-invariant Lagrangian dynamical systems→ class Lagrangian-

LinearTIDS . 12

3 Dynamical Systems implementation in Siconos. 14
3.1 Introduction . 14
3.2 Class Diagram . 14
3.3 Construction . 15

3.3.1 DynamicalSystem . 15
3.3.2 LagrangianDS . 15

3.4 Specific flags or members . 16
3.5 plug-in management . 16

4 Interactions 17
4.1 Introduction . 17
4.2 Class Diagram . 17
4.3 Description . 17

5 Notes on the Non Smooth Dynamical System construction 18
5.1 Introduction . 18
5.2 Class Diagram . 18
5.3 Description . 18
5.4 misc . 18

1

6 OneStepIntegrator and derived classes. 20
6.1 Introduction . 20
6.2 Class Diagram . 20
6.3 Misc . 20
6.4 Construction . 21

6.4.1 Moreau . 21
6.4.2 Lsodar . 21

7 First Order Nonlinear Relation 22

8 Computation of the number of Index Set and various levels 23
8.1 Why is the relative degree not relevant ? . 23

8.1.1 First order Linear complementary systems . 23
8.1.2 Second order Lagrangian systems . 24
8.1.3 Conclusion for the implementation . 25

8.2 How to define and compute the various levels and the number of indexSets 25
8.2.1 y related variables . 25
8.2.2 λ related variables . 26

8.3 Rules for implementation . 26

9 Newton’s linearization for First Order Systems 28
9.1 Various first order dynamical systems with input/output relations 28
9.2 Time–discretizations . 29

9.2.1 Standard θ−γ scheme. 29
9.2.2 Full θ−γ scheme . 29

9.3 Newton’s linearization of (9.5) . 31
9.3.1 The special case of Newton’s linearization of (9.5) with FirstOrderType2R (9.3) . . 34
9.3.2 The special case of Newton’s linearization of (9.5) with FirstOrderType1R (9.2) . . 35
9.3.3 Time–discretization of the linear case (9.4) . 35

9.4 Newton’s linearization of (9.6) . 37

10 Newton’s linearization for Lagrangian systems 41
10.1 Various second order dynamical systems with input/output relations 41

10.1.1 Lagrangian dynamical systems . 41
10.1.2 Fully nonlinear case . 42
10.1.3 Lagrangian Rheonomous relations . 42
10.1.4 Lagrangian Scleronomous relations . 42

10.2 Moreau–Jean event-capturing scheme . 43
10.2.1 The Linear Time-invariant NonSmooth Lagrangian Dynamics 43
10.2.2 The Nonlinear NonSmooth Lagrangian Dynamics 45

10.3 Schatzman–Paoli ’scheme and its linearizations . 48
10.3.1 The scheme . 48
10.3.2 The Newton linearization . 49
10.3.3 Linear version of the scheme . 49

10.4 What about mixing OnestepIntegrator in Simulation? . 50

11 NewtonEuler Dynamical Systems 51
11.1 The equations of motion . 51
11.2 Basic elements of Lie groups and Lie algebras theory. 53

11.2.1 Differential equation (evolving) on a manifoldM 54
11.2.2 Lie algebra and Lie group . 54
11.2.3 Actions of a group G on manifoldM . 55
11.2.4 Exponential map . 56
11.2.5 Translation (Trivialization) maps . 56
11.2.6 Adjoint representation . 57

2

11.2.7 Differential of the exponential map . 58
11.2.8 Differential of a map f : G → g . 59

11.3 Lie group SO(3) of finite rotations and Lie algebra so(3) of infinitesimal rotations 60
11.3.1 Newton method and differential of a map f : G → g 63

11.4 Lie group of unit quaternions IH1 and pure imaginary quaternions IHp. 64
11.5 Newton-Euler equation in quaternion form . 71

11.5.1 Mechanical systems with bilateral and unilateral constraints 71
11.6 Time integration scheme in scheme . 72

11.6.1 Moreau–Jean scheme based on a θ-method . 72
11.6.2 Semi-explicit version Moreau–Jean scheme based on a θ-method 73
11.6.3 Nearly implicit version Moreau–Jean scheme based on a θ-method implemented

in siconos . 73
11.6.4 Computation of the Jacobian in special case . 74
11.6.5 Siconos implementation . 75

12 NewtonEulerR: computation of ∇qH 76
12.0.1 Gradient computation, case of NewtonEuler with quaternion 76
12.0.2 Ball case . 77
12.0.3 Case FC3D: using the local frame and momentum 78
12.0.4 Case FC3D: using the local frame local velocities . 79

13 Projection On constraints 80
13.0.1 Velocity formulation . 80
13.0.2 Posion formulation . 80

14 Simulation of a Cam Follower System 82
14.0.1 The cam-follower as a Lagrangian NSDS. 82
14.0.2 Implementation in the platform . 84
14.0.3 Simulation . 89

15 Quartic Formulation 92
15.0.1 Slidding ? . 92

16 Alart–Curnier Formulation 95
16.1 Reduced formulation to local variables. 95

16.1.1 Formulation . 95
16.1.2 Structure of the Jacobians . 95
16.1.3 Computation of the gradients . 95
16.1.4 Rearranging the cases . 97

16.2 Formulation with global variables. 97
16.2.1 Formulation . 97
16.2.2 Structure of the Jacobians . 97
16.2.3 Simplification ? . 98

3

Chapter 1

OneStepNSProblem formalisation for
several interactions

author F. Pérignon
date May 16, 2006
version ?

1.1 LinearDS - Linear Time Invariant Relations

1.1.1 General notations

We consider n dynamical systems of the form:

ẋi = Aixi + Ri (1.1)

Each system if of dimension ni, and we denote N =
n

∑
i=1

ni.

An interaction, Iα is composed with a non smooth law, nslawα and a relation:

yα = CαXα + Dαλα (1.2)

The “dimension” of the interaction, ie the size of vector yα , is denoted mα and we set:

M =
m

∑
α=1

mα

m being the number of interactions in the Non Smooth Dynamical System.
Xα is a vector that represents the DS concerned by the interaction. Its dimension is noted Nα , this for nα
systems in the interaction.
Cα is a mα × Nα row-blocks matrix and Dα a mα ×mα square matrix.

Cα =
[

Ci
α C j

α ...
]

(1.3)

with i, j, ... ∈ DSα which is the set of DS belonging to interactionα.
We also have the following relation:  Ri

α

R j
α

...

 = Bαλα =

 Bi
α

B j
α

...

 λα (1.4)

4

Siconos Development team – Notes 5/98

Ri
α represents the contribution of interaction α on the reaction of the dynamical system i, and Bi

α is a
ni ×mα block matrix.
And so:

Ri = ∑
β∈Ii

Ri
β = ∑

β∈Ii

Bi
βλβ (1.5)

with Ii the set of interactions in which dynamical system number i is involved.
Introducing the time discretization, we get:

xk+1
i − xk

i = hAixk+1
i + hRk+1

i (1.6)

yk+1
α = CαXk+1

α + Dαλk+1
α (1.7)

Rk+1
i = ∑

β∈Ii

Bi
βλ

k+1
β (1.8)

ie, with Wi = (I − hAi)
−1:

xk+1
i = Wixk

i + hWiRk+1
i (1.9)

yk+1
α = CαWαXk

α + CαhWα ∑
β∈Ii

Bi
βλ

k+1
β + Dαλk+1

α (1.10)

= CαWαXk
α + (CαhWαBα + Dα)λk+1

α + ∑
β 6=α

(∑
i∈DSα∩∈DSβ

hCi
αWiBi

βλ
k+1
β) (1.11)

with

Wα =

 Wi 0 ...
0 Wj ...
0

 (1.12) {Walpha}

the block-diagonal matrix of all the W for the dynamical systems involved in interactionα.
The global-assembled Y vector, of dimension M, composed by m yα subvectors, is given by:

Yk+1 = qOSNSP + MOSNSPΛk+1 (1.13)

or,

Yk+1 =

 y1
...
ym


k+1

=

 C1
1 . . . Cn

1
... . . .

...
C1

m . . . Cn
m




W1 0 . . . 0

0 W2
. . .

...
...

.
...

0 Wn




x1
...
...

xn


k

(1.14)

+


D1 + h ∑

j∈DS1

C j
1WjB

j
1 h ∑

j∈DS1∩DS2

C j
1WjB

j
2 . . .

...
. . .

h ∑
j∈DSm

C j
mWjB

j
m−1 Dm + h ∑

j∈DSm∩DSm−1

C j
mWjB

j
m


 λ1

...
λm


k+1

To sum it up, the block-diagonal term of matrix MOSNSP, for block-rowα is:

Dα + h ∑
j∈DSα

C j
αWjB

j
α (1.15)

This is an mα ×mα square matrix. The extra-diagonal block term, in position (α,β) is:

h ∑
j∈DSα∩DSβ

C j
αWjB

j
β (1.16)

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 6/98

and is a mα × mβ matrix. This matrix differs from 0 when interactions α and β are coupled, ie have
common DS.

Or, for the relation l of interactionα, we get:

Dα,l + h ∑
j∈DSα

C j
α,lWjB

j
α (1.17)

for the diagonal, and
h ∑

j∈DSα∩DSβ
C j
α,lWjB

j
β (1.18)

for extra-diagonal terms.
Dα,l , row number l of Dα , the same for Cα,l

Finally, the linked-Interaction map provides, for each interaction (named “current interaction”), the
list of all the interactions (named “linked interaction”) that have common dynamical system with the
“current interaction”.

1.1.2 A simple example

We consider n = 3 dynamical systems and m = 2 interactions:

Iµ → DSµ = {DS1, DS3}, mµ = 3
Iθ → DSθ = {DS2, DS3}, mθ = 1

The linked-interaction map is :

Iµ → Iθ , commonDS = DS3

Iθ → Iµ , commonDS = DS3

And:

M = 4, N =
3

∑
i=1

ni

I1 = {Iµ}
I2 = {Iθ}
I3 = {Iµ , Iθ}

y1 =
[

C1
1 C3

1
] [x1

x3

]
+ D1λ1 (1.19)

y2 =
[

C2
2 C3

2
] [x2

x3

]
+ D2λ2 (1.20)

 R1
R2
R3

 =

 B1
1λ1

B2
2λ2

B3
1λ1 + B3

2λ2

 (1.21)

MOSNSP =

[
D1 + hC1

1W1B1
1 + hC3

1W3B3
1 hC3

1W3B3
2

hC3
2W3B3

1 D2 + hC2
2W2B2

2 + hC3
2W3B3

2

] [
λ1
λ2

]
k+1

(1.22)

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 7/98

1.1.3 relative degree

Let us consider the global vector

Y =

 y1
...
yM

 = CX + DΛ (1.23)

We denote by r j the relative degree of equation j, j ∈ [1..M]. We have:

y j =
n

∑
i=1

Ci
jxi + D j, jλ j +

m

∑
i 6= j,i=1

D j,iλi (1.24)

D j,i a scalar and Ci
j a 1× ni line-vector.

If D j j 6= 0, then r j = 0. Else, we should consider the first derivative of y j.
Before that, recall that:

Ri =
M

∑
k=1

Bi
kλ j (1.25)

Through many of the Bi
j are equal to zero, we keep them all in the following lines.

Then:

ẏ j =
n

∑
i=1

Ci
j(Aixi +

M

∑
k=1

Bi
kλk) + f (λk)k 6= j (1.26)

=
n

∑
i=1

Ci
j(Aixi + Bi

jλ j +
M

∑
k=1,k 6= j

Bi
kλk) + . . . (1.27)

So, if
n

∑
i=1

Ci
jB

i
j 6= 0 (note that this corresponds to the product between line j of C and column j of B)

then r j = 1 else we consider the next derivative, and so on.
In derivative r, the coefficient of λ j will be:

coe f f j =
n

∑
i=1

Ci
j(Ai)

r−1Bi
j (1.28)

if coe f f j 6= 0 then r j = r.

1.2 LagrangianDS - Lagrangian Linear Relations

1.2.1 General notations

We consider n dynamical systems, lagrangian and non linear, of the form:

Mi(qi)q̈i + Ni(q̇i , qi) = FInt,i(q̇i , qi , t) + FExt,i(t) + pi (1.29)

Each system if of dimension ni, and we denote N =
n

∑
i=1

ni.

An interaction, Iα is composed with a non smooth law, nslawα and a relation:

yα = HαQα + bα (1.30)

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 8/98

The “dimension” of the interaction, ie the size of vector yα , is denoted mα and we set:

My =
m

∑
α=1

mα

m being the number of interactions in the Non Smooth Dynamical System.
Qα is a vector that represents the DS concerned by the interaction. Its dimension is noted Nα , this for nα
systems in the interaction.
Hα is a mα × Nα row-blocks matrix and bα a mα vector.

Hα =
[

Hi
α H j

α ...
]

(1.31)

with i, j, ... ∈ DSα which is the set of DS belonging to interactionα.
We also have the following relation: Ri

α

R j
α

...

 = tHαλα =

 tHi
α

tH j
α

...

 λα (1.32)

Ri
α represents the contribution of interaction α on the reaction of the dynamical system i, and tHi

α is a
ni ×mα block matrix.
And so:

Ri = ∑
β∈Ii

Ri
β = ∑

β∈Ii

Hi
βλβ (1.33)

with Ii the set of interactions in which dynamical system number i is involved.
Introducing the time dicretisation, we get:

q̇k+1
i = q̇ f ree,i + WiRk+1

i

ẏk+1
α = HαQ̇k+1

α (1.34)

Rk+1
i = ∑

β∈Ii

Hi
βλ

k+1
β (1.35)

ie,

yk+1
α = HαQ f ree

α + HαWα
tHαλα + ∑

i∈DSα
∑

β∈Ii ,α 6=β
Hi
αWi H

j
βλβ (1.36)

with Wα given by (1.12).
The global-assembled Y vector, of dimension M, composed by m yα subvectors, is given by:

Yk+1 = qOSNSP + MOSNSPΛk+1 (1.37)

with:

qαOSNSP = HαQ f ree
α (1.38)

and for MOSNSP, the block-diagonal term for block-rowα is

∑
j∈DSα

H j
αWj

tH j
α (1.39)

an mα ×mα square matrix. The extra-diagonal block term, in position (α,β) is:

∑
j∈DSα∩DSβ

H j
αWj

tH j
β (1.40)

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 9/98

and is a mα × mβ matrix. This matrix differs from 0 when interactions α and β are coupled, ie have
common DS.

Or, for the relation l of interactionα, we get:

∑
j∈DSα

H j
α,lWj

tH j
α (1.41)

for the diagonal, and

∑
j∈DSα∩DSβ

H j
α,lWj

tH j
β (1.42)

for extra-diagonal terms.
Hα,l , row number l of Hα .

WARNING: depending on linear and non linear case for the DS, there should be a factor h ahead W.
See Bouncing Ball template.

1.3 Block matrix approach

The built of the OSNSProblem matrix could be computed using block matrix structure. This section
describe these matrices. It is not implemented in Siconos. Using previous notations, n is the number of
DS. m the number of interations.

1.3.1 Block matrix of DS

MẊ = AX + R

where M = diag(M1, ...Mn) and A = diag(A1, .., An).

R = Bλ

B =


B1

1 ...B1
m

.

.
Bn

1 ...Bn
m


Some of Bi

j doesn’t exist.

1.3.2 Block matrix of interaction

Y = CX + Dλ

with D = diag(D1..Dm) and

C =


C1

1 ..Cn
1

.

.
C1

m...Cn
m


Some of Ci

j doesn’t exist.

1.3.3 OSNSProblem using block matrices

The Matrix of the OSNS Problem could be assembled using the following block-product-matrices CW B.

file DevNotes.tex – 2018-03-14 11:18

Chapter 2

Dynamical Systems formulations in
Siconos.

author F. Pérignon
date March 22, 2006
version Kernel 1.1.4

2.1 Class Diagram

There are four possible formulation for dynamical systems in Siconos, two for first order systems and
two for second order Lagrangian systems. The main class is DynamicalSystem, all other derived from
this one, as shown in the following diagram:

LinearTIDS

LagrangianDS

LagrangianLinearTIDS

LinearDS

{DSDiagram}

2.2 General non linear first order dynamical systems
→ class DynamicalSystem

This is the top class for dynamical systems. All other systems classes derived from this one.

10

Siconos Development team – Notes 11/98

A general dynamical systems is described by the following set of n equations, completed with initial
conditions:

ẋ = f (x, t) + T(x)u(x, ẋ, t) + r (2.1)
x(t0) = x0 (2.2)

• x: state of the system - Vector of size n.

• f (x, t): vector field - Vector of size n.

• u(x, ẋ, t): control term - Vector of size uSize.

• T(x): n× uSize matrix, related to control term.

• r: input due to non-smooth behavior - Vector of size n.

The Jacobian matrix,∇x f (x, t), of f according to x, n× n square matrix, is also a member of the class.

Initial conditions are given by the member x0, vector of size n. This corresponds to x value when
simulation is starting, ie after a call to strategy->initialize().

There are plug-in functions in this class for f (vectorField), jacobianX, u and T. All of them can
handle a vector of user-defined parameters.

2.3 First order linear dynamical systems→ class LinearDS

Derived from DynamicalSystem, described by the set of n equations and initial conditions:

ẋ = A(t)x(t) + Tu(t) + b(t) + r (2.3)
x(t0) = x0 (2.4)

With:

• A(t): n× n matrix, state independent but possibly time-dependent.

• b(t): Vector of size n, possibly time-dependent.

Other variables are those of DynamicalSystem class.
A and B have corresponding plug-in functions.

Warning: time dependence for A and b is not available at the time in the simulation part for this kind
of dynamical systems.

Links with vectorField and its Jacobian are:

f (x, t) = A(t)x(t) + b(t) (2.5)
jacobianX = ∇x f (x, t) = A(t) (2.6)

2.4 Second order non linear Lagrangian dynamical systems
→ class LagrangianDS

Lagrangian second order non linear systems are described by the following set ofnDo f equations +
initial conditions:

M(q)q̈ + NNL(q̇, q) + FInt(q̇, q, t) = FExt(t) + p (2.7)
q(t0) = q0 (2.8)
q̇(t0) = velocity0 (2.9)

With:

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 12/98

• M(q): nDo f × nDo f matrix of inertia.

• q: state of the system - Vector of size nDo f .

• q̇ or velocity: derivative of the state according to time - Vector of size nDo f .

• NNL(q̇, q): non linear terms, time-independent - Vector of size nDo f .

• FInt(q̇, q, t): time-dependent linear terms - Vector of size nDo f .

• FExt(t): external forces, time-dependent BUT do not depend on state - Vector of size nDo f .

• p: input due to non-smooth behavior - Vector of size nDo f .

The following Jacobian are also member of this class:

• jacobianQFInt = ∇qFInt(t, q, q̇) - nDo f × nDo f matrix.

• jacobianVelocityFInt = ∇q̇FInt(t, q, q̇) - nDo f × nDo f matrix.

• jacobianQNNL = ∇qNNL(q, q̇) - nDo f × nDo f matrix.

• jacobianVelocityNNL = ∇q̇NNL(q, q̇) - nDo f × nDo f matrix.

There are plug-in functions in this class for Fint, FExt, M, NNL and the four Jacobian matrices. All of
them can handle a vector of user-defined parameters.

Links with first order dynamical system are:

n = 2nDo f (2.10)

x =

[
q
q̇

]
(2.11)

f (x, t) =

[
q̇

M−1(FExt − FInt − NNL)

]
(2.12)

(2.13)

∇x f (x, t) =

[
0nDo f×nDo f InDo f×nDo f

∇q(M−1)(FExt − FInt − NNL)−M−1∇q(FInt + NNL) −M−1∇q̇(FInt + NNL)

]
(2.14)

r =

[
0nDo f

p

]
(2.15)

u(x, ẋ, t) = uL(q̇, q, t) (not yet implemented) (2.16)

T(x) =

[
0nDo f
TL(q)

]
(not yet implemented) (2.17)

(2.18)

With 0n a vector of zero of size n, 0n×m a n×m zero matrix and In×n, identity n× n matrix.

Warning: control terms (Tu) are not fully implemented in Lagrangian systems. This will be part of
future version.

2.5 Second order linear and time-invariant Lagrangian dynamical sys-
tems→ class LagrangianLinearTIDS

{Sec:LagrangianLineatTIDS}

Mq̈ + Cq̇ + Kq = FExt(t) + p (2.19)

With:

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 13/98

• C: constant viscosity nDo f × nDo f matrix

• K: constant rigidity nDo f × nDo f matrix

And:

FInt = Cq̇ + Kq (2.20)
NNL = 0nDo f (2.21)

file DevNotes.tex – 2018-03-14 11:18

Chapter 3

Dynamical Systems implementation in
Siconos.

author F. Pérignon
date November 7, 2006
version Kernel 1.3.0

3.1 Introduction

This document is only a sequel of notes and remarks on the way Dynamical Systems are implemented
in Siconos.
It has to be completed, reviewed, reorganized etc etc for a future Developpers’Guide.
See also documentation in Doc/User/DynamicalSystemsInSiconos for a description of various dynam-
ical systems types.

3.2 Class Diagram

There are four possible formulation for dynamical systems in Siconos, two for first order systems and
two for second order Lagrangian systems. The main class is DynamicalSystem, all other derived from
this one, as shown in the following diagram:

LinearTIDS

LagrangianDS

LagrangianLinearTIDS

LinearDS

{DSDiagram}

14

Siconos Development team – Notes 15/98

3.3 Construction

Each constructor must:

• initialize all the members of the class and of the top-class if it exists

• allocate memory and set value for all required inputs

• allocate memory and set value for optional input if they are given as argument (in xml for example)

• check that given data are coherent and that the system is complete (for example, in the LagrangianDS
if the internal forces are given as a plug-in, their Jacobian are also required. If they are not given,
this leads to an exception).

No memory allocation is made for unused members⇒ requires if statements in simulation. (if!=NULL
...).

3.3.1 DynamicalSystem

Required data:
n, x0, f, jacobianXF
Optional:
T,u

Always allocated in constructor:
x, x0, xFree, r, rhs, jacobianXF

Warning: default constructor is always private or protected and apart from the others and previous
rules or remarks do not always apply to it. This for DS class and any of the derived ones.

3.3.2 LagrangianDS

Required data:
ndof, q0, velocity0, mass
Optional:
fInt and its Jacobian, fExt, NNL and its Jacobian.

Always allocated in constructor:
mass, q, q0, qFree, velocity, velocity0, velocityFree, p.
All other pointers to vectors/matrices are set to NULL by default.
Memory vectors are required but allocated during call to initMemory function.

Various rules:

• fInt (NNL) given as a plug-in⇒ check that JacobianQ/Velocity are present (matrices or plug-in)

• any of the four Jacobian present ⇒ allocate memory for block-matrix jacobianX (connectToDS
function)

•

check: end of constructor or in initialize?
computeF and JacobianF + corresponding set functions: virtual or not?

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 16/98

3.4 Specific flags or members

• isAllocatedIn: to check inside-class memory allocation

• isPlugin: to check if operators are computed with plug-in or just directly set as a matrix or vector

• workMatrix: used to save some specific matrices in order to avoid recomputation if possible (in-
verse of mass ...)

3.5 plug-in management

DynamicalSystem class has a member named parameterList which is a map < string, SimpleVector∗ >,
ie a list of pointers to SimpleVector*, with a string as a key to identified them. For example, parametersList[”mass”]
is a SimpleVector*, which corresponds to the last argument given in mass plug-in function.
By default, each parameters vectors must be initialized with a SimpleVector of size 1, as soon as the
plug-in is declared. Moreover, to each vector corresponds a flag in isAllocatedIn map, to check if the
corresponding vector has been allocated inside the class or not.
For example, in DynamicalSystem, if isPlugin[”vectorField”] == true, then, during call to constructor
or set function, it is necessary to defined the corresponding parameter:
parametersList[”vectorField”] = newSimpleVector(1)
and to complete the isAllocatedIn flag:
isAllocatedIn[”parameter f orvectorField”] = true.

file DevNotes.tex – 2018-03-14 11:18

Chapter 4

Interactions

author F. Pérignon
date November 7, 2006
version Kernel 1.3.0

4.1 Introduction

This document is only a sequel of notes and remarks on the way Interactions are implemented in
Siconos.
It has to be completed, reviewed, reorganized etc etc for a future Developpers’Guide.
See also documentation in Doc/User/Interaction.

4.2 Class Diagram

4.3 Description

4.3.1 Redaction note F. PERIGNON
review of interactions (for EventDriven implementation) 17th May 2006.

• variable nInter renamed in interactionSize: represents the size of y and λ. NOT the number of rela-
tions !!

• add a variable nsLawSize that depends on the non-smooth law type.
Examples:

– NewtonImpact -> nsLawSize = 1
– Friction 2D -> nsLawSize = 2
– Friction 3D -> nsLawSize = 3
– ...
– nsLawSize = n with n dim of matrix D in : y = Cx + Dλ, D supposed to be a full-ranked

matrix.
Warning: this case is represented by only one relation of size n.

• numberOfRelations: number of relations in the interaction, numberOfRelations =
interactionSize

nsLawSize
.

17

Chapter 5

Notes on the Non Smooth Dynamical
System construction

author F. Pérignon
date November 7, 2006
version Kernel 1.3.0

5.1 Introduction

5.2 Class Diagram

5.3 Description

Objects must be constructed in the following order:

• DynamicalSystems

• NonSmoothLaw: depends on nothing

• Relation: no link with an interaction during construction, this will be done during initialization.

• Interaction: default constructor is private and copy is forbidden. Two constructors: xml and from
data. Required data are a DSSet, a NonSmoothLaw and a Relation (+ dim of the Interaction and a
number).
Interaction has an initialize function which allocates memory for y and lambda, links correctly the
relation and initializes it This function is called at the end of the constructor. That may be better
to call it in simulation->initialize? Pb: xml constructor needs memory allocation for y and lambda
if they are provided in the input xml file.

• NonSmoothDynamicalSystem: default is private, copy fobidden. Two constructors: xml and from
data. Required data are the DSSet and the InteractionsSet. The topology is declared and con-
structed (but empty) during constructor call of the nsds, but initialize in the Simulation, this be-
cause it can not be initialize until the nsds has been fully described (ie this to allow user to add DS,
Inter ...) at any time in the model, but before simulation initialization).

5.4 misc

• no need to keep a number for Interactions? Only used in xml for OSI, to know which Interactions
it holds.

18

Siconos Development team – Notes 19/98

• pb: the number of saved derivatives for y and lambda in Interactions is set to 2. This must depends
on the relative degree which is computes during Simulation initialize and thus too late. It is so not
available when memory is allocated (Interaction construction). Problem-> to be reviewed.

file DevNotes.tex – 2018-03-14 11:18

Chapter 6

OneStepIntegrator and derived classes.

author F. Pérignon
date November 7, 2006
version Kernel 1.3.0

6.1 Introduction

This document is only a sequel of notes and remarks on the way OneStepIntegrators are implemented
in Siconos.
It has to be completed, reviewed, reorganized etc etc for a future Developpers’Guide.
See also documentation in Doc/User/OneStepIntegrator for a description of various OSI.

6.2 Class Diagram

6.3 Misc

OSI review for consistency between Lsodar and Moreau:

• add set of DynamicalSystem*

• add set of Interaction*

• add link to strategy that owns the OSI

• remove td object in OSI -> future: replace it by a set of td (one per ds)

• add strat in constructors arg list

osi -> strat -> Model -> nsds -> topology
osi -> strat -> timeDiscretisation

let a timeDiscretisation object in the OSI? set of td (one per ds)?
create a class of object that corresponds to DS on the simulation side ?
will contain the DS, its discretization, theta for Moreau ... ?
Allow setStrategyPtr operation? Warning: need reinitialisation.

Required input by user:

20

Siconos Development team – Notes 21/98

• list of DS or list of Interactions ?

• pointer to strategy

• ...

6.4 Construction

Each constructor must:

•

6.4.1 Moreau

Two maps: one for W, and one for theta. To each DS corresponds a theta and a W.
Strategy arg in each constructor.

Required data:

Optional:

Always allocated in constructor:

Warning: default constructor is always private or protected and apart from the others and previous
rules or remarks do not always apply to it.

6.4.2 Lsodar

Required data:

Optional:

Always allocated in constructor:

file DevNotes.tex – 2018-03-14 11:18

Chapter 7

First Order Nonlinear Relation

author 0. Bonnefon
date July, 1 2009
version Kernel 3.0.0

22

Chapter 8

Computation of the number of Index
Set and various levels

author V. Acary
date Septembre 16, 2011
version Kernel 3.3.0

In this chapter, we give some hints on the automatic computation of the number of index sets, the
number of derivatives in the Interaction and the levelMin and LevelMax.

8.1 Why is the relative degree not relevant ?

In this section, we give a very brief overview of the notion of relative degree.

8.1.1 First order Linear complementary systems

A Linear Complementarity System (LCS) is defined by
ẋ = Ax + Bλ
y = Cx + Dλ
0 ≤ y ⊥ λ ≥ 0

(8.1) {eq:LCS-bis}

Definition 1 (Relative degree in the SISO case) Let us consider a linear system in state representation given
by the quadruplet (A, B, C, D) ∈ IRn×n × IRn×m × IRm×n × IRm×m:{

ẋ = Ax + Bλ
y = Cx + Dλ

(8.2) {eq:LS}

• In the Single Input/ Single Output (SISO) case (m = 1), the relative degree is defined by the first non zero
Markov parameters :

D, CB, CAB, CA2B, . . . , CAr−1B, . . . (8.3) {eq:Markov-Parameter}

• In the multiple input/multiple output (MIMO) case (m > 1), an uniform relative degree is defined as
follows. If D is non singular, the relative degree is equal to 0. Otherwise, it is assumed to be the first positive
integer r such that

CAiB = 0, i = 0 . . . q− 2 (8.4) {eq:mimo-r}

while
CAr−1B is non singular. (8.5) {eq:mimo-r2}

23

Siconos Development team – Notes 24/98

The Markov parameters arise naturally when we derive with respect to time the output y,

y = Cx + Dλ
ẏ = CAx + CBλ, if D = 0

ÿ = CA2x + CABλ, if D = 0, CB = 0
. . .

y(r) = CArx + CAr−1Bλ, if D = 0, CB = 0, CAr−2B = 0, r = 1 . . . r− 2
. . .

and the first non zero Markov parameter allows us to define the output y directly in terms of the input
λ.

In continuous time, the nature of solutions depends strongly on the relative degree. When we want
to perform the time–integration of such systems, we need also to reduce the relative degree or to known
it to correctly operate.

We can observe that the relative degree 0 is well defined only by the relation (D nonsingular) and by
the nonsmooth law. Indeed, let us imagine that the nonsmooth law is defined by 0 ≤ ẏ ⊥ λ ≥ 0. We
can easily see that the relative degree is reduced.

In the MIMO, the computation of non uniform relative degree is hard task. This is also the case for
nonlinear systems.

8.1.2 Second order Lagrangian systems

Let us consider a second order linear and time-invariant Lagrangian dynamical system (see § 2.5){
Mv̇ + Cv + Kq = FExt(t) + p
q̇ = v

(8.6) {eq:rd1}

together with a Lagrangian linear relation

y = Cq + e + Dλ+ Fz, (8.7) {eq:rd2}

p = Ctλ (8.8) {eq:rd3}

and a simple nonsmooth law,
0 ≤ y ⊥ λ ≥ 0 (8.9) {eq:rd4}

If D > 0, the relative degree is uniformly zero and the system can be solved without deriving the
output (8.7). Indeed, we known that the solution of the LCP

0 ≤ Cq + e + Dλ+ Fz,⊥ λ ≥ 0 (8.10) {eq:rd5}

is unique and Lipschitz with respect to q. It can be denoted as λ(q) = SOL(D, Cq + e + Fz). Therefore,
the differential equation (8.6) reduces to a standard ODE with a Lipschitz RHS{

Mv̇ + Cv + Kq = FExt(t) + Ctλ(q)
q̇ = v

(8.11) {eq:rd6}

In the case that we deal with unilateral contact, we usually have D = 0 and the relative degree of the
system is 2. In this case, the output has to be differentiated as

ẏ = Cq̇, (8.12) {eq:rd7}

and an impact law has to added, for instance the newton’s impact law

if y = 0, when ẏ+ = −ey− (8.13) {eq:rd8}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 25/98

In the same vein, the equations of motion (8.6) is not sufficient since the velocity may encounter jumps.
The dynamics is usually replaced by a measure differential equation of the form{

Mdv + Cv+(t)dt + Kq(t)dt = FExt(t)dt + di
q̇ = v

(8.14) {eq:rd10}

where di is the measure that can be related to p thanks to

di = pdt +σδt∗ (8.15) {eq:rd11}

is only one jump is expected at t∗.

8.1.3 Conclusion for the implementation

From the continuous time mathematical analysis, the relative degree is very important to know if we
have to compute the derivatives of the output y(n) and to consider various levels for the input p,σ ,

However in the numerical practice, the time –discretization makes an assumption on the relative
degree and treats the nonsmooth law at different levels. The resulting time discretized system posseses
more or less variables.

Consider for instance (8.6) in the case of the Moreau scheme

M(vk+1 − vk) + h(Kqk+θ + Cvk+θ) = pk+1 = G(qk+1)λk+1, (8.16a) {eq:MoreauTS}

qk+1 = qk + hvk+θ , (8.16b)

ẏk+1 = G>(qk+1) vk+1 (8.16c)

if ȳαk+1 ≤ 0 then 0 ≤ ẏαk+1 + eẏαk ⊥ λ
α
k+1 ≥ 0,

otherwise λαk+1 = 0.
,α ∈ I (8.16d) {eq:MoreauTSd}

and the Schatzman–Paoli scheme

M(qk+1 − 2qk + qk−1) + h2(Kqk+θ + Cvk+θ) = pk+1, (8.17a)

vk+1 =
qk+1 − qk−1

2h
, (8.17b)

yk+1 = h
(

qk+1 + eqk−1
1 + e

)
(8.17c)

pk+1 = G
(

qk+1 + eqk−1
1 + e

)
λk+1 (8.17d)

0 ≤ yk+1 ⊥ λk+1 ≥ 0. (8.17e)

We can see easily that the number of derivatives (or levels) that we store for y and λ is independent
on the relative degree but is chosen by the OneStepIntegrator with respect to the type of systems.

8.2 How to define and compute the various levels and the number of
indexSets

8.2.1 y related variables

The size of the vector y in the Interaction depends on

• the OneStepIntegrator type.

– see the difference between the Moreau and Schatzman Paoli scheme,

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 26/98

– plan the time–discontinuous Galerkin scheme

– plan the Higher Order Moreau sweeping process (HOSP)

• the Simulation type.

– In Timestepping or Event-driven we do not need the same number of stored y

• the NonSmoothLaw type.

– If we consider some cases with or without friction in Timestepping or Event-driven, we
need to adapt the number of stored y

Since the various levels of y are used to build the index sets we will need from 0 to a computed size
that depends on the previous criteria. Only a part will be used in the OneStepNSProblem.

8.2.2 λ related variables

The size of the vector lambda in the Interaction depends on the same criteria than in the previous
section. Only, the number of lambda is not the same as y since a multiplier lambda[i] is not necessarily
related to y[i]

8.3 Rules for implementation

We can define new members in Interaction:

• _lowerlevelForOutput, this value is to 0 by default

• _upperlevelForOutput, this value must be computed at initialization with respect to the previous
criteria

• _lowerlevelForInput, this value must be computed at initialization with respect to the previous
criteria

• _upperlevelForInput, this value must be computed at initialization with respect to the previous
criteria

This level are computed in Simulation::ComputeLevelsForInputAndOutput. A visitor is used for
the OneStepIntegrator. Furthermore, four global levels are computed

• _levelMinForOutput this value is the minimum level for the output Interaction::_lowerlevelForOutput
for all the interactions

• _levelMaxForOutput this value is the maximum level for the output Interaction::_upperlevelForOutput
for all the interactions

• _levelMinForInput this value is the minimum level for the output Interaction::_lowerlevelForInput
for all the interactions

• _levelMaxForInput this value is the maximum level for the output Interaction::_upperlevelForInput
for all the interactions

• the values y[i] must be initialized from _lowerlevelForOutput to _upperlevelForOutput.

• the values lamdba[i] must be initialized from _lowerlevelForInput to _upperlevelForInput.

• the values y[i] in Interaction must be used in priority to store the i-th derivative of y. When
it is needed, higher index i can be used for other triggering variables. For instance, for an Event–
Driven scheme with a Lagrangian systems with friction, sliding velocity must be stored.

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 27/98

• the values of lamdba[i] must stored the various multiplier for the nonsmooth law. We affect the
same index i as for the level of y[i] present in the corresponding nonsmooth law.

• The number of IndexSets should follows _levelMaxForY.

For the dynamical systems :

• The number of levels for _r and _p in the DS should follow _lowerlevelForInput and _upperlevelForOutput
of the associated interactions. This is done in Interaction::initialize.

• A new variable should be added in the LagrangianDS to store the multiplier at the position level
(_tau ?) to avoid the use of _p[0]. Indeed, we will continue to assume that _p is the input in the
equation of motion. For lambda we can use lambda[0]

TODO LIST AND QUESTIONS

• What about the case of multiples interactions on a DS with various _lowerlevelForInput and
_upperlevelForOutput ? Normally, all the levels should be correctly initialized thanks to the
proposed implementation (r2821)

• DynamicalSystem::_r should be a VectorOfVectors

• DynamicalSystem::_r is split in LagrangianDS. a first part is LagrangianDS::_p. The other is not
implemented !! LagrangianDS::_tau ?

file DevNotes.tex – 2018-03-14 11:18

Chapter 9

Newton’s linearization for First Order
Systems

author O.Bonnefon, V. Acary
date Sept, 07, 2007
last update Feb, 2011

April, 2014
version

This section is devoted to the implementation and the study of the algorithm. The interval of inte-
gration is [0, T], T > 0, and a grid t0 = 0, tk+1 = tk + h, k ≥ 0, tN = T is constructed. The approximation
of a function f (·) on [0, T] is denoted as f N(·), and is a piecewise constant function, constant on the
intervals [tk, tk+1). We denote f N(tk) as fk. The time-step is h > 0.

9.1 Various first order dynamical systems with input/output relations

FirstOrderR. Fully nonlinear case Let us introduce the following system,

Mẋ(t) = f (x(t), t) + r(t)

y(t) = h(t, x(t), λ(t))

r(t) = g(t, x(t), λ(t))
(9.1) {first-DS}

where λ(t) ∈ IRm and y(t) ∈ IRm are complementary variables related through a multi-valued map-
ping. According to the class of systems, we are studying, the function f and g are defined by a fully
nonlinear framework or by affine functions. We have decided to present the time-discretization in its
full generality and specialize the algorithms for each cases in Section ??. This fully nonlinear case is not
implemented in Siconos yet. This fully general case is not yet implemented in Siconos.

This case is implemented in Siconos with the relation FirstOrderR using the subtype NonLinearR

FirstOrderType1R Let us introduce a new notation,

Mẋ(t) = f (x(t), t) + r(t)

y(t) = h(t, x(t))

r(t) = g(t, λ(t))
(9.2) {first-DS1}

This case is implemented in Siconos with the relation FirstOrderType1R.

28

Siconos Development team – Notes 29/98

FirstOrderType2R Let us introduce a new notation,

Mẋ(t) = f (x(t), t) + r(t)

y(t) = h(t, x(t), λ(t))

r(t) = g(t, λ(t))
(9.3) {first-DS2}

This case is implemented in Siconos with the relation FirstOrderType2R.

Linear case Let us introduce a new notation,

Mẋ(t) = Ax(t) + r(t) + b(t)

y(t) = h(x(t), λ(t), z) = Cx + Fz + Dλ

r(t) = g(t, λ(t)) = Bλ
(9.4) {first-DS3}

9.2 Time–discretizations

9.2.1 Standard θ−γ scheme.

Let us now proceed with the time discretization of (9.4) by a fully implicit scheme :

Mxk+1 = Mxk + hθ f (xk+1, tk+1) + h(1−θ) f (xk, tk) + hγr(tk+1) + h(1−γ)r(tk)

yk+1 = h(tk+1, xk+1, λk+1)

rk+1 = g(tk+1, xk+1, λk+1)

NsLaw(yk+1, λk+1)

(9.5) {eq:toto1}

where θ = [0, 1] and γ ∈ [0, 1]. As in [?], we call the problem (9.5) the “one–step nonsmooth problem”.
In the Siconos/Kernel module, the use of γ is activated in the class EulerMoreauOSI by the boolean

_useGamma.
This time-discretization is slightly more general than a standard implicit Euler scheme. The main

discrepancy lies in the choice of a θ-method to integrate the nonlinear term. For θ = 0, we retrieve the
explicit integration of the smooth and single valued term f . Moreover for γ = 0, the term g is explicitly
evaluated. The flexibility in the choice of θ and γ allows the user to improve and control the accuracy,
the stability and the numerical damping of the proposed method. For instance, if the smooth dynamics
given by f is stiff, or if we have to use big step sizes for practical reasons, the choice of θ > 1/2 offers
better stability with the respect to h.

9.2.2 Full θ−γ scheme

Another possible time–discretization is as follows.

Mxk+1 = Mxk + hθ f (xk+1, tk+1) + h(1−θ) f (xk, tk) + hr(tk+γ)

yk+γ = h(tk+γ , xk+γ , λk+γ)

rk+γ = g(tk+γ , xk+γ , λk+γ)

NsLaw(yk+γ , λk+γ)

(9.6) {eq:toto1-ter}

We call the scheme (9.6) the full θ−γ scheme since it uses also the evaluation at tk+γ for the relation.
In the Siconos/Kernel module, the time–stepping scheme is activated in the class EulerMoreauOSI

by the boolean _useGammaForRelation.

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 30/98

Another possibility for the time discretization in the nonlinear case would be

Mxk+1 = Mxk + h f (xk+θ , tk+θ) + hr(tk+γ)

yk+γ = h(tk+γ , xk+γ , λk+γ)

rk+γ = g(tk+γ , xk+γ , λk+γ)

NsLaw(yk+γ , λk+γ)

(9.7) {eq:toto1-quat}

This scheme has not been yet implemented in Siconos/Kernel.

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 31/98

9.3 Newton’s linearization of (9.5)

Due to the fact that two of the studied classes of systems that are studied in this paper are affine functions
in terms of f and g, we propose to solve the "one–step nonsmooth problem” (9.5) by performing an
external Newton linearization.

Newton’s linearization of the first line of (9.5) The first line of the problem (9.5) can be written under
the form of a residueR depending only on xk+1 and rk+1 such that

R(xk+1, rk+1) = 0 (9.8) {eq:NL3}

with
R(x, r) = M(x− xk)− hθ f (x, tk+1)− h(1−θ) f (xk, tk)− hγr− h(1−γ)rk. (9.9)

The solution of this system of nonlinear equations is sought as a limit of the sequence {xαk+1, rαk+1}α∈IN
such that

x0
k+1 = xk

r0
k+1 = rk

RL(xα+1
k+1 , rα+1

k+1) = R(xαk+1, rαk+1) +
[
∇xR(xαk+1, rαk+1)

]
(xα+1

k+1 − xαk+1) +
[
∇rR(xαk+1, rαk+1)

]
(rα+1

k+1 − rαk+1) = 0
(9.10) {eq:NL7}

9.3.1 Redaction note V. ACARY
What about r0

k+1 ?

The residu freeRfree is also defined (useful for implementation only):

Rfree(x) ∆
= M(x− xk)− hθ f (x, tk+1)− h(1−θ) f (xk, tk),

which yields
R(x, r) = Rfree(x)− hγr− h(1−γ)rk .

R(xαk+1, rαk+1) = Rαk+1
∆
= Rfree(xαk+1)− hγrαk+1 − h(1−γ)rk (9.11) {eq:rfree-1}

Rfree(xαk+1, rαk+1) = Rαfree,k+1
∆
= M(xαk+1 − xk)− hθ f (xαk+1, tk+1)− h(1−θ) f (xk, tk)

At each time–step, we have to solve the following linearized problem,

Rαk+1 + (M− hθAαk+1)(xα+1
k+1 − xαk+1)− hγ(rα+1

k+1 − rαk+1) = 0, (9.12) {eq:NL10}

with
Aαk+1 = ∇x f (tk+1, xαk+1) (9.13)

By using (9.11), we get

Rfree(xαk+1, rαk+1)− hγrα+1
k+1 − h(1−γ)rk + (M− hθAαk+1)(xα+1

k+1 − xαk+1) = 0 (9.14) {eq:rfree-2}

The matrix W is clearly non singular for small h.

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 32/98

Newton’s linearization of the second line of (9.5) The same operation is performed with the second
equation of (9.5)

Ry(x, y, λ) = y− h(tk+1, x, λ) = 0 (9.15)

which is linearized as

RLy(xα+1
k+1 , yα+1

k+1 , λα+1
k+1) = Ry(xαk+1, yαk+1, λαk+1) + (yα+1

k+1 − yαk+1)−

Cαk+1(xα+1
k+1 − xαk+1)− Dαk+1(λ

α+1
k+1 − λ

α
k+1) = 0

(9.16) {eq:NL9}

This leads to the following linear equation

yα+1
k+1 = yαk+1 −R

α
yk+1 + Cαk+1(xα+1

k+1 − xαk+1) + Dαk+1(λ
α+1
k+1 − λ

α
k+1) . (9.17) {eq:NL11y}

with,
Cαk+1 = ∇xh(tk+1, xαk+1, λαk+1)

Dαk+1 = ∇λh(tk+1, xαk+1, λαk+1)
(9.18)

and

Rαyk+1
∆
= yαk+1 − h(xαk+1, λαk+1) (9.19)

Newton’s linearization of the third line of (9.5) The same operation is performed with the third equa-
tion of (9.5)

Rr(r, x, λ) = r− g(tk+1, x, λ) = 0 (9.20)

which is linearized as

RLr(rα+1
k+1 , xα+1

k+1 , λα+1
k+1) = R

α
rk+1 + (rα+1

k+1 − rαk+1)− Kαk+1(xα+1
k+1 − xαk+1)− Bαk+1(λ

α+1
k+1 − λ

α
k+1) = 0

(9.21) {eq:NL9}

rα+1
k+1 = g(tk+1, xαk+1, λαk+1) + Kαk+1(xα+1

k+1 − xαk+1) + Bαk+1(λ
α+1
k+1 − λ

α
k+1) (9.22) {eq:rrL}

with,
Kαk+1 = ∇xg(tk+1, xαk+1, λαk+1)

Bαk+1 = ∇λg(tk+1, xαk+1, λαk+1)
(9.23)

and the residue for r:

Rαrk+1 = rαk+1 − g(tk+1, xαk+1, λαk+1) (9.24)

Reduction to a linear relation between xα+1
k+1 and λα+1

k+1 Inserting (9.22) into (9.14), we get the following
linear relation between xα+1

k+1 and λα+1
k+1 ,

Rαfree,k+1 − hγ
[

g(tk+1, xαk+1, λαk+1) + Bαk+1(λ
α+1
k+1 − λ

α
k+1) + Kαk+1(xα+1

k+1 − xαk+1)
]

−h(1−γ)rk + (M− hθAαk+1)(xα+1
k+1 − xαk+1) = 0

(9.25) {eq:rfree-3}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 33/98

that is

(M− hθAαk+1 − hγKαk+1)(xα+1
k+1 − xαk+1) = −Rαfree,k+1 − h(1−γ)rk

+hγ
[

g(tk+1, xαk+1, λαk+1) + Bαk+1(λ
α+1
k+1 − λ

α
k+1)

] (9.26) {eq:rfree-4}

Let us introduce some intermediate notation:

Wα
k+1

∆
= M− hθAαk+1 − hγKαk+1) (9.27) {eq:NL9}

xαfree
∆
= xαk+1 − (Wα

k+1)
−1(Rαfree,k+1−h(1−γ)rk) (9.28) {eq:rfree-12}

and

xαp
∆
= hγ(Wα

k+1)
−1 [g(tk+1, xαk+1, λαk+1)− Bαk+1(λ

α
k+1)

]
+ xαfree . (9.29)

The relation (9.26) can be written as

xα+1
k+1

∆
= xαp +

[
hγ(Wα

k+1)
−1Bαk+1λ

α+1
k+1

]
(9.30) {eq:rfree-13}

Reduction to a linear relation between yα+1
k+1 and λα+1

k+1 . Inserting (9.30) into (9.17), we get the following
linear relation between yα+1

k+1 and λα+1
k+1 ,

yα+1
k+1 = yp +

[
hγCαk+1(W

α
k+1)

−1Bαk+1 + Dαk+1

]
λα+1

k+1 (9.31)

with

yp = yαk+1 −R
α
yk+1 + Cαk+1(xq)− Dαk+1λ

α
k+1 (9.32)

xq = xαp − xαk+1 (9.33) {eq:xqq}

Mixed linear complementarity problem (MLCP) To summarize, the problem to be solved in each
Newton iteration is: 

yα+1
k+1 = Wα

mlcpk+1λ
α+1
k+1 + bαk+1

−yα+1
k+1 ∈ N[l,u](λ

α+1
k+1).

(9.34) {eq:NL14}

with Wmlcpk+1 ∈ IRm×m and b ∈ IRm defined by

Wα
mlcpk+1 = hγCαk+1(W

α
k+1)

−1Bαk+1 + Dαk+1
bαk+1 = yp

(9.35) {eq:NL15}

The problem (10.41) is equivalent to a Mixed Linear Complementarity Problem (MLCP) which can
be solved under suitable assumptions by many linear complementarity solvers such as pivoting tech-
niques, interior point techniques and splitting/projection strategies. The reformulation into a standard

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 34/98

MLCP follows the same line as for the MCP in the previous section. One obtains,

yα+1
k+1 = −Wα

k+1λ
α+1
k+1 + bαk+1

(yα+1
k+1)i = 0 for i ∈ {1..n}

0 ≤ (λα+1
k+1)i ⊥ (yα+1

k+1)i ≥ 0 for i ∈ {n..n + m}

(9.36) {eq:MLCP1}

9.3.1 The special case of Newton’s linearization of (9.5) with FirstOrderType2R (9.3)

Let us now proceed with the time discretization of (9.5) with FirstOrderType2R (9.3) by a fully implicit
scheme :

Mxk+1 = Mxk + hθ f (xk+1, tk+1) + h(1−θ) f (xk, tk) + hγr(tk+1) + h(1−γ)r(tk)

yk+1 = h(tk+1, xk+1, λk+1)

rk+1 = g(tk+1, λk+1)

(9.37) {eq:mlcp2-toto1-DS2}

Newton’s linearization of the first line of (9.37) The linearization of the first line of the problem (9.37)
is similar to the previous case so that (9.14) is still valid.

Newton’s linearization of the second line of (9.37) The linearization of the second line of the prob-
lem (9.37) is similar to the previous case so that (9.17) is still valid.

Newton’s linearization of the third line of (9.37) Since Kαk+1 = ∇xg(tk+1, λαk+1) = 0, the linearization
of the third line of (9.37) reads as

rα+1
k+1 = g(tk+1, λαk+1) + Bαk+1(λ

α+1 − λαk+1) (9.38) {eq:mlcp2-rrL}

Reduction to a linear relation between xα+1
k+1 and λα+1

k+1 Inserting (9.38) into (??), we get the following
linear relation between xα+1

k+1 and λα+1
k+1 , we get the linear relation

xα+1
k+1

∆
= xαp +

[
hγ(Wα

k+1)
−1Bαk+1λ

α+1
k+1

]
(9.39) {eq:mlcp2-rfree-13}

with

xαp
∆
= hγ(Wα

k+1)
−1 [g(tk+1, λαk+1)− Bαk+1(λ

α
k+1)

]
+ xαfree (9.40)

and
Wα

k+1
∆
= M− hθAαk+1

(9.41) {eq:mlcp2-NL9}

Reduction to a linear relation between yα+1
k+1 and λα+1

k+1 Inserting (9.39) into (9.17), we get the following
linear relation between yα+1

k+1 and λα+1
k+1 ,

yα+1
k+1 = yp +

[
hγCαk+1(W

α
k+1)

−1Bαk+1 + Dαk+1

]
λα+1

k+1 (9.42)

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 35/98

with

yp = yαk+1 −R
α
yk+1 + Cαk+1(xq)− Dαk+1λ

α
k+1 (9.43)

xαq = xαp − xαk+1 (9.44) {eq:mlcp2-xqq}

9.3.2 The special case of Newton’s linearization of (9.5) with FirstOrderType1R (9.2)

Let us now proceed with the time discretization of (9.5) with FirstOrderType1R (9.2) by a fully implicit
scheme :

Mxk+1 = Mxk + hθ f (xk+1, tk+1) + h(1−θ) f (xk, tk) + hγr(tk+1) + h(1−γ)r(tk)

yk+1 = h(tk+1, xk+1)

rk+1 = g(tk+1λk+1)

(9.45) {eq:mlcp3-toto1-DS1}

The previous derivation is valid with Dαk+1 = 0.

9.3.3 Time–discretization of the linear case (9.4)

Let us now proceed with the time discretization of (9.5) with FirstOrderLinearR (9.4) by a fully implicit
scheme :

Mxα+1
k+1 = Mxk + hθAxα+1

k+1 + h(1−θ)Axk + hγrα+1
k+1 + h(1−γ)r(tk) + hb

yα+1
k+1 = Cxα+1

k+1 + Dλα+1
k+1 + Fz + e

rα+1
k+1 = Bλα+1

k+1

(9.46) {eq:toto1-DS3}

Rfree = M(xαk+1 − xk)− hθAxαk+1 − h(1−θ)Axk − hbk+1

Rfree = W(xαk+1 − xk)− hAxk − hbk+1

Resulting Newton step (only one step) For the sake of simplicity, let us assume that γ = 1

(M− hθA)xα+1
k+1 = Mxk + h(1−θ)Axk + hrα+1

k+1 + hb

yα+1
k+1 = Cxα+1

k+1 + Dλα+1
k+1 + Fz + e

rα+1
k+1 = Bλα+1

k+1

(9.47)

that lead to with: (M− hθA) = W

xα+1
k+1 = W−1(Mxk + h(1−θ)Axk + rα+1

k+1 + hb) = xfree+ W−1(rα+1
k+1)

yα+1
k+1 = (D + hCW−1B)λα+1

k+1 + Fz + CW−1(Mxk + h(1−θ)Axk + hb) + e
(9.48)

with xfree = xαk+1 + W−1(−Rfree) = xαk+1 −W−1(W(xαk+1 − xk)− hAxk − hbk+1) = W−1(Mxk + h(1−
θ)Axk + hbk+1)

yα+1
k+1 = (D + hCW−1B)λα+1

k+1 + Fz + Cxfree + e

rα+1
k+1 = Bλα+1

k+1
(9.49)

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 36/98

Coherence with previous formulation

yp = yαk+1 −R
α
yk+1 + Cαk+1(xp − xαk+1)− Dαk+1λ

α
k+1

yp = Cxk + Dλk + C(x̃free)− Dλk + Fz + e

yp = Cxk + C(x̃free) + Fz + e

yp = Cxk + C(x̃free) + Fz + e

yp = C(xfree) + Fz + e

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 37/98

9.4 Newton’s linearization of (9.6)

In this section, we deal with only with the FirstOrderType2R case.

Mxk+1 = Mxk + hθ f (xk+1, tk+1) + h(1−θ) f (xk, tk) + hrk+γ

yk+γ = h(tk+γ , xk+γ , λk+γ)

rk+γ = g(tk+γ , λk+γ)

(9.50) {eq:full-toto1-ter}

Newton’s linearization of the first line of (9.50) The first line of the problem (9.50) can be written
under the form of a residueR depending only on xk+1 and rk+γ such that

R(xk+1, rk+γ) = 0 (9.51) {eq:full-NL3}

with
R(x, r) = M(x− xk)− hθ f (x, tk+1)− h(1−θ) f (xk, tk)− hr.

The solution of this system of nonlinear equations is sought as a limit of the sequence {xαk+1, rαk+γ}α∈IN
such that 

x0
k+1 = xk

r0
k+γ = (1−γ)rk +γr0

k+1 = rk

RL(xα+1
k+1 , rα+1

k+γ) = R(xαk+1, rαk+γ) +
[
∇xR(xαk+1, rαk+γ)

]
(xα+1

k+1 − xαk+1)+[
∇rR(xαk+1, rαk+γ)

]
(rα+1

k+γ − rαk+γ) = 0

(9.52) {eq:full-NL7}

9.4.1 Redaction note V. ACARY
What about r0

k+γ ?

The residu free is also defined (useful for implementation only):

Rfree(x) ∆
= M(x− xk)− hθ f (x, tk+1)− h(1−θ) f (xk , tk).

We get

R(xαk+1, rαk+γ) = Rαk+1
∆
= Rfree(xαk+1)− hrαk+γ (9.53) {eq:full-rfree-1}

Rfree(xαk+1) = Rαfree,k+1
∆
= M(xαk+1 − xk)− hθ f (xαk+1, tk+1)− h(1−θ) f (xk, tk)

The computation of the Jacobian ofR with respect to x, denoted by Wα
k+1 leads to

Wα
k+1

∆
= ∇xR(xαk+1) = M− hθ∇x f (xαk+1, tk+1). (9.54) {eq:full-NL9}

At each time–step, we have to solve the following linearized problem,

Rαk+1 + Wα
k+1(xα+1

k+1 − xαk+1)− h(rα+1
k+γ − rαk+γ) = 0, (9.55) {eq:full-NL10}

By using (9.53), we get
Rfree(xαk+1)− hrα+1

k+γ + Wα
k+1(xα+1

k+1 − xαk+1) = 0 (9.56) {eq:full-rfree-2}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 38/98

xα+1
k+1 = h(Wα

k+1)
−1rα+1

γ+1 + xαfree (9.57)

with :

xαfree
∆
= xαk+1 − (Wα

k+1)
−1Rαfree,k+1 (9.58) {eq:full-rfree-12}

The matrix W is clearly non singular for small h.
Note that the linearization is equivalent to the case (9.14) and (9.28) with γ = 1 and replacing rk+1

by rk+γ .

Newton’s linearization of the second line of (9.50) The same operation is performed with the second
equation of (9.50)

Ry(x, y, λ) = y− h(tk+γ ,γx + (1−γ)xk , λ) = 0 (9.59)

which is linearized as

RLy(xα+1
k+1 , yα+1

k+γ , λα+1
k+γ) = Ry(xαk+1, yαk+γ , λαk+γ) + (yα+1

k+γ − yαk+γ)−

γCαk+1(xα+1
k+1 − xαk+1)− Dαk+γ(λ

α+1
k+γ − λ

α
k+γ) = 0

(9.60) {eq:full-NL9}

This leads to the following linear equation

yα+1
k+γ = yαk+γ −R

α
y,k+1 +γCαk+1(xα+1

k+1 − xαk+1) + Dαk+γ(λ
α+1
k+γ − λ

α
k+γ) . (9.61) {eq:full-NL11y}

with,
Cαk+γ = ∇xh(tk+1, xαk+γ , λαk+γ)

Dαk+γ = ∇λh(tk+1, xαk+γ , λαk+γ)
(9.62)

and

Rαyk+1
∆
= yαk+γ − h(xαk+γ , λαk+γ) (9.63)

Note that the linearization is equivalent to the case (9.17) by replacing λk+1 by λk+γ and xk+1 by
xk+γ .

Newton’s linearization of the third line of (9.50) The same operation is performed with the third
equation of (9.50)

Rr(r, λ) = r− g(λ, tk+1) = 0 (9.64)

which is linearized as

RLλ(rα+1
k+γ , λα+1

k+γ) = R
α
r,k+γ + (rα+1

k+γ − rαk+γ)− Bαk+γ(λ
α+1
k+γ − λ

α
k+γ) = 0 (9.65) {eq:full-NL9}

rα+1
k+γ = g(λαk+γ , tk+γ)− Bαk+γλ

α
k+γ + Bαk+γλ

α+1
k+γ (9.66) {eq:full-rrL}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 39/98

with,
Bαk+γ = ∇λg(λαk+γ , tk+γ) (9.67)

and the residue for r:

Rαrk+γ = rαk+γ − g(λαk+γ , tk+γ) (9.68)

Note that the linearization is equivalent to the case (9.22) by replacing λk+1 by λk+γ and xk+1 by xk+γ .

Reduction to a linear relation between xα+1
k+1 and λα+1

k+γ Inserting (9.66) into (9.58), we get the following

linear relation between xα+1
k+1 and λα+1

k+1 ,

xα+1
k+1 = h(Wα

k+1)
−1
[

g(λαk+γ , tk+γ) + Bαk+γ(λ
α+1
k+γ − λ

α
k+γ)

]
+ xαf ree (9.69)

that is

xα+1
k+1 = xp + h(Wα

k+1)
−1Bαk+γλ

α+1
k+γ (9.70) {eq:full-rfree-13}

with

xp
∆
= h(Wα

k+1)
−1
[

g(λαk+γ , tk+γ)− Bαk+γ(λ
α
k+γ)

]
+ xαf ree (9.71)

Reduction to a linear relation between yα+1
k+γ and λα+1

k+γ Inserting (9.70) into (9.61), we get the following

linear relation between yα+1
k+1 and λα+1

k+1 ,

yα+1
k+1 = yp +

[
hγCαk+γ(W

α
k+1)

−1Bαk+1 + Dαk+1

]
λα+1

k+1 (9.72)

with
yp = yαk+1 −R

α
yk+1 +γCαk+1(xq)− Dαk+1λ

α
k+1 (9.73)

that is

yp = h(xαk+γ , λαk+γ) + γCαk+1(xq)− Dαk+1λ
α
k+1 (9.74)

xq = (xp − xαk+1) (9.75) {eq:full-xqq}

The linear case
yp = h(xαk+γ , λαk+γ) + γCαk+1(xq)− Dαk+1λ

α
k+1

= Cαk+1xαk+γ + Dαk+1λ
α
k+γ +γCαk+1(xq)− Dαk+1λ

α
k+1

= Cαk+1(xαk+γ +γxp −γxαk+1)
= Cαk+1((1−γ)xk +γx f ree)since xp = x f ree

(9.76)

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 40/98

Implementation details For the moment (Feb. 2011), we set xq = (1 − γ)xk + γx f ree in the linear
case The nonlinear case is not yet implemented since we need to change the management of H_alpha in
Relation to be able to compute the mid–point values. things that remain to do

• implement the function BlockVector computeg(t,lambda) and SimpleVector computeh(t,x,lambda)
which takes into account the values of the argument and return and vector

• remove temporary computation in Relation of Xq,g_alphaand H_alpha. This should be stored
somewhere else. (in the node of the graph)

file DevNotes.tex – 2018-03-14 11:18

Chapter 10

Newton’s linearization for Lagrangian
systems

author V. Acary
date Sept, 20, 2011
version

This section is devoted to the implementation and the study of the algorithm. The interval of inte-
gration is [0, T], T > 0, and a grid t0 = 0, tk+1 = tk + h, k ≥ 0, tN = T is constructed. The approximation
of a function f (·) on [0, T] is denoted as f N(·), and is a piecewise constant function, constant on the
intervals [tk, tk+1). We denote f N(tk) as fk. The time-step is h > 0.

10.1 Various second order dynamical systems with input/output re-
lations

10.1.1 Lagrangian dynamical systems

The class LagrangianDS defines and computes a generic ndof-dimensional Lagrangian Non Linear Dy-
namical System of the form :{

M(q, z)v̇ + N(v, q, z) + FInt(v, q, t, z) = FExt(t, z) + p
q̇ = v

(10.1)

where

• q ∈ Rndo f is the set of the generalized coordinates,

• q̇ = v ∈ Rndo f the velocity, i. e. the time derivative of the generalized coordinates (Lagrangian
systems).

• q̈ = v̇ ∈ Rndo f the acceleration, i. e. the second time derivative of the generalized coordinates.

• p ∈ Rndo f the reaction forces due to the Non Smooth Interaction.

• M(q) ∈ Rndo f×ndo f is the inertia term saved in the SiconosMatrix mass.

• N(q̇, q) ∈ Rndo f is the non linear inertia term saved in the SiconosVector _NNL.

• FInt(q̇, q, t) ∈ Rndo f are the internal forces saved in the SiconosVector fInt.

41

Siconos Development team – Notes 42/98

• FExt(t) ∈ Rndo f are the external forces saved in the SiconosVector fExt.

• z ∈ RzSize is a vector of arbitrary algebraic variables, some sort of discrete state.

The equation of motion is also shortly denoted as:

M(q, z)v̇ = F(v, q, t, z) + p (10.2)

where F(v, q, t, z) ∈ Rndo f collects the total forces acting on the system, that is

F(v, q, t, z) = FExt(t, z)− NNL(v, q, z) + FInt(v, q, t, z) (10.3)

This vector is stored in the SiconosVector _Forces

10.1.2 Fully nonlinear case

Let us introduce the following system,
M(q, z)v̇ = F(v, q, t, z) + p
q̇ = v
y = h(t, q, λ)
p = g(t, q, λ)

(10.4) {eq:FullyNonLinear}

where λ(t) ∈ IRm and y(t) ∈ IRm are complementary variables related through a multi-valued mapping.
According to the class of systems, we are studying, the function F , h and g are defined by a fully
nonlinear framework or by affine functions. This fully nonlinear case is not implemented in Siconos yet.
This fully general case is not yet implemented in Siconos.

10.1.3 Lagrangian Rheonomous relations
M(q, z)v̇ = F(v, q, t, z) + p
q̇ = v
y = h(t, q)
p = G(t, q)λ)

(10.5) {eq:RheonomousNonLinear}

10.1.4 Lagrangian Scleronomous relations
M(q, z)v̇ = F(v, q, t, z) + p
q̇ = v
y = h(q)
p = G(q)λ

(10.6) {eq:ScleronomousNonLinear}

Fully Linear case 
Mv̇ + Cv + Kq = FExt(t, z) + p
q̇ = v
y = Cq + e + Dλ+ Fz
p = CTλ

(10.7) {eq:FullyLinear}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 43/98

10.2 Moreau–Jean event-capturing scheme

In this section, a time-discretization method of the Lagrange dynamical equation (11.17), consistent
with the nonsmooth character of the solution, is presented. It is assumed in this section, as in the other
sections, that v+(·) = q̇+(·) is a locally bounded variation function. The equation of motion reads as,

M(q(t))dv + N(q(t), v+(t))dt + Fint(t, q(t), v+(t)) dt = Fext(t) dt + dr

v+(t) = q̇+(t)

q(0) = q0 ∈ C(0), q̇(0−) = q̇0

(10.8) {eq:11-b}

We also assume that Fint(·) and Fext(·) are continuous with respect to time. This assumption is made for
the sake of simplicity to avoid the notation F+

int(·) and F+
ext(·). Finally, we will condense the nonlinear

inertia terms and the internal forces to lighten the notation. We obtain

M(q(t))dv + F(t, q(t), v+(t)) dt = Fext(t) dt + dr

v+(t) = q̇+(t)

q(0) = q0 ∈ C(0), q̇(0−) = q̇0

(10.9) {eq:11-c}

The NSCD method, also known as the Contact Dynamics (CD) is due to the seminal works of J.J. [?
? ? ? ?] and M. [? ?] (See also [? ? ?]). A lot of improvements and variants have been proposed over
the years. In this Section, we take liberties with these original works, but we choose to present a version
of the NSCD method which preserves the essential of the original work. Some extra developments and
interpretations are added which are only under our responsibility. To come back to the source of the
NSCD method, we encourage to read the above references.

10.2.1 The Linear Time-invariant NonSmooth Lagrangian Dynamics
{section11.1.1}

For the sake of simplicity of the presentation, the linear time-invariant case is considered first. The
nonlinear case will be examined later in this chapter.

Mdv + (Kq(t) + Cv+(t)) dt = Fext(t) dt + dr

v+(t) = q̇+(t)
(10.10) {eq:11-a}

10.2.1.a Time–discretization of the Dynamics

Integrating both sides of this equation over a time step (tk, tk+1] of length h > 0, one obtains

∫
(tk ,tk+1]

Mdv +
∫ tk+1

tk

(Cv+(t) + Kq(t)) dt =
∫ tk+1

tk

Fext dt +
∫
(tk ,tk+1]

dr ,

q(tk+1) = q(tk) +
∫ tk+1

tk

v+(t) dt

(10.11)

By definition of the differential measure dv, we obtain∫
(tk ,tk+1]

M dv = M
∫
(tk ,tk+1]

dv = M (v+(tk+1)− v+(tk)) (10.12) {eq:19}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 44/98

Note that the right velocities are involved in this formulation. The impulsion
∫
(tk ,tk+1]

dr of the reaction

on the time interval (tk, tk+1] emerges as a natural unknown. The equation of the nonsmooth motion
can be written under an integral form as:

M (v(tk+1)− v(tk)) =
∫ tk+1

tk

(−Cv+(t)− Kq(t) + Fext(t)) dt +
∫
(tk ,tk+1]

dr ,

q(tk+1) = q(tk) +
∫ tk+1

tk

v+(t) dt

(10.13)

Choosing a numerical method boils down to choose a method of approximation for the remaining inte-
gral terms. Since discontinuities of the derivative v(·) are to be expected if some shocks are occurring,
i.e.. dr has some atoms within the interval (tk, tk+1], it is not relevant to use high order approximations
integration schemes for dr (this was pointed out in remark ??). It may be shown on some examples that,
on the contrary, such high order schemes may generate artefact numerical oscillations (see [?]).

The following notation will be used:

• qk is an approximation of q(tk) and qk+1 is an approximation of q(tk+1),

• vk is an approximation of v+(tk) and vk+1 is an approximation of v+(tk+1),

• pk+1 is an approximation of
∫
(tk ,tk+1]

dr.

A popular first order numerical scheme, the so called θ-method, is used for the term supposed to be
sufficiently smooth:∫ tk+1

tk

Cv + Kq dt ≈ h [θ(Cvk+1 + Kqk+1) + (1−θ)(Cvk + Kqk)]∫ tk+1

tk

Fext(t) dt ≈ h [θ(Fext)k+1 + (1−θ)(Fext)k]

The displacement, assumed to be absolutely continuous, is approximated by:

qk+1 = qk + h [θvk+1 + (1−θ)vk]

Taking into account all these discretizations, the following time-discretized equation of motion is ob-
tained: 

M(vk+1 − vk) + h [θ(Cvk+1 + Kqk+1) + (1−θ)(Cvk + Kqk)] =

= h [θ(Fext)k+1 + (1−θ)(Fext)k] + pk+1

qk+1 = qk + h [θvk+1 + (1−θ)vk]

(10.14) {eq:NSCD-discret}

Finally, introducing the expression of qk+1 in the first equation of (10.14), one obtains:[
M + hθC + h2θ2K

]
(vk+1 − vk) = −hCvk − hKqk − h2θKvk

+h [θ(Fext)k+1) + (1−θ)(Fext)k] + pk+1 , (10.15) {eq:23}

which can be written as:

vk+1 = vfree + M̂−1 pk+1 (10.16) {eq:24}

where,

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 45/98

• the matrix
M̂ =

[
M + hθC + h2θ2K

]
(10.17) {eq:2002}

is usually called the iteration matrix.

• The vector
vfree = vk + M̂−1

[
−hCvk − hKqk − h2θKvk

+h [θ(Fext)k+1) + (1−θ)(Fext)k]]

(10.18) {eq:2003}

is the so-called “free” velocity, i.e., the velocity of the system when reaction forces are null.

10.2.1.b Comments

Let us make some comments on the above developments:

• The iteration matrix M̂ =
[

M + hθC + h2θ2K
]

is supposed to be invertible, since the mass matrix
M is usually positive definite and h is supposed to be small enough. The matrices C and K are
usually semi-definite positive since rigid motions are allowed to bodies.

• When θ = 0, the θ-scheme is the explicit Euler scheme. When θ = 1, the θ-scheme is the fully
implicit Euler scheme. When dealing with a plain ODE

Mq̈(t) + Cq̇(t) + Kq(t) = F(t) (10.19)

the θ−scheme is unconditionally stable for 0.5 < θ ≤ 1. It is conditionally stable otherwise.

• The equation (11.35) is a linear form of the dynamical equation. It appears as an affine relation
between the two unknowns, vk+1 that is an approximation of the right derivative of the Lagrange
variable at time tk+1, and the impulse pk+1. Notice that this scheme is fully implicit. Nonsmooth
laws have to be treated by implicit methods.

• From a numerical point of view, two major features appear. First, the different terms in the
numerical algorithm will keep finite values. When the time step h vanishes, the scheme copes
with finite jumps. Secondly, the use of differential measures of the time interval (tk, tk+1], i.e..,
dv((tk, tk+1]) = v+(tk+1)− v+(tk) and dr((tk, tk+1]), offers a rigorous treatment of the nonsmooth
evolutions. It is to be noticed that approximations of the acceleration are ignored.

These remarks on the contact dynamics method might be viewed only as some numerical tricks.
In fact, the mathematical study of the second order MDI by Moreau provides a sound mathematical
ground to this numerical scheme. It is noteworthy that convergence results have been proved for such
time-stepping schemes [? ? ? ?], see below.

10.2.2 The Nonlinear NonSmooth Lagrangian Dynamics
{section11.1.2}

10.2.2.a Time–discretization of the Dynamics

Starting from the nonlinear dynamics (10.9), the integration of both sides of this equation over a time
step (tk, tk+1] of length h > 0 yields

∫
(tk ,tk+1]

M(q)dv +
∫ tk+1

tk

F(t, q(t), v+(t)) dt =
∫ tk+1

tk

Fext(t) dt +
∫
(tk ,tk+1]

dr ,

q(tk+1) = q(tk) +
∫ tk+1

tk

v+(t) dt

(10.20)

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 46/98

The first term is generally approximated by∫
(tk ,tk+1]

M(q) dv ≈ M(qk+γ) (vk+1 − vk) (10.21) {eq:19-NL}

where qk+γ generalizes the standard notation for γ ∈ [0, 1] such that

qk+γ = (1−γ)qk +γ qk+1 (10.22) {eq:NL1}

The a priori smooth terms are evaluated with a θ-method, chosen in this context for its energy conserva-
tion ability, ∫ tk+1

tk

F(t, q, v) dt ≈ hF̃k+θ (10.23)

where F̃k+θ is an approximation with the following dependencies

F̃(tk, qk, vk, tk+1, qk+1, vk+1, tk+θ , qk+θ , vk+θ)

The mid-values tk+θ , qk+θ , vk+θ are defined by tk+θ = θtk+1 + (1−θ)tk
qk+θ = θqk+1 + (1−θ)qk
vk+θ = θvk+1 + (1−θ)vk

, θ ∈ [0, 1] (10.24) {eq:NSCD-discret-b}

{eq:Simo}
Remark 1 The choice of the approximated function F̃(·) strongly depends on the nature of the internal forces that
are modeled. For the linear elastic behavior of homogeneous continuum media, this approximation can be made by:

F̃k+θ =
1
2

K : [E(qk) + E(qk+1)] : F(qk+1/2) (10.25)

where E(: cdot) is the Green-Lagrange strain tensor, which leads to an energy conserving algorithm as in [?].
For nonlinear elastic other smooth nonlinear behaviors, we refer to the work of [? ?] and references therein for the
choice of the discretization and the value of θ.

The displacement, assumed to be absolutely continuous is approximated by:

qk+1 = qk + h vk+θ

The following nonlinear time–discretized equation of motion is obtained:
M(qk+γ)(vk+1 − vk) + hF̃k+θ = pk+1

qk+1 = qk + hvk+θ

(10.26) {eq:NSCD-discret-nl}

In its full generality and at least formally, substituting the expression of qk+γ , qk+1 and qk+θ, the first line
of the problem can be written under the form of a residueR depending only on vk+1 such that

R(vk+1) = pk+1 (10.27) {eq:NL3}

In the last expression, we have omitted the dependence to the known values at the beginning the time–
step, i.e. qk and vk.

10.2.2.b Linearizing the Dynamics

The system of equations (10.27) for vk+1 and pk+1 can be linearized yielding a Newton’s procedure for
solving it. This linearization needs the knowledge of the Jacobian matrix ∇R(·) with respect to its
argument to construct the tangent linear model.

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 47/98

Let us consider that the we have to solve the following equations,

R(u) = 0 (10.28) {eq:NL4}

by a Newton’s method where

R(u) = M(qk+γ)(vk+1 − vk) + hF̃k+θ (10.29) {eq:NL6}

The solution of this system of nonlinear equations is sought as a limit of the sequence {uτk+1}τ∈IN such
that 

u0
k+1 = vk

RL(uτ+1
k+1) = R(u

τ
k+1) +∇R(u

τ
k+1)(u

τ+1
k+1 − uτk+1) = 0

(10.30) {eq:NL7}

In practice, all the nonlinearities are not treated in the same manner and the Jacobian matrices for the
nonlinear terms involved in the Newton’s algorithm are only computed in their natural variables. In the
following, we consider some of the most widely used approaches.

The Nonlinear Mass Matrix The derivation of the Jacobian of the first term ofR(·) implies to compute

∇u
(

M(qk+γ(u))(u− vk)
)

with qk+γ(u) = qk +γh[(1−θ)vk +θu]. (10.31) {eq:NL2000}

One gets

∇u
(

M(qk+γ(u))(u− vk)
)

= M(qk+γ(u)) +
[
∇u M(qk+γ(u))

]
(u− vk)

= M(qk+γ(u)) +
[
hγθ∇q M(qk+γ(u))

]
(u− vk)

(10.32) {eq:NL8}

Remark 2 The notation ∇u M(qk+γ(u))(u− vk) is to be understood as follows:

∇u M(qk+γ(u))(u− vk) =
∂

∂u
[M(qk+γ(u))(u− vk)]

which is denoted as
∂Mi j

∂ql (qk+γ(u))(ul − vl
k) in tensorial notation.

{remarkBABAS}
A very common approximation consists in considering that the mass matrix evolves slowly with the

configuration in a single time–step, that is, the term ∇q M(qk+γ) is neglected and one gets,

∇u(M(qk+γ(u))(u− vk)) ≈ M(qk+γ(u)) (10.33) {eq:NL9}

The Jacobian matrix ∇R(·) is evaluated in uτk+1 which yields for the equation (10.33)

∇u(M(qk+γ)(uτk+1 − vk)) ≈ M(qk +γh[(1−θ)vk +θuτk+1])) (10.34) {eq:NL10}

The prediction of the position which plays an important role will be denoted by

q̃τk+1 = qk +γh[(1−θ)vk +θuτk+1] (10.35) {eq:NL555}

Very often, the matrix M(qk+γ) is only evaluated at the first Newton’s iteration with u0
k+1 = vk

leading the approximation for the whole step:

M(qk +γh[(1−θ)vk +θuτk+1])) ≈ M(qk + hγvk) (10.36) {eq:NL11}

Another way to interpret the approximation (10.36) is to remark that this evaluation is just an explicit
evaluation of the predictive position (10.35) given by θ = 0:

q̃k+1 = qk + hγvk (10.37) {eq:NL5}

Using this prediction, the problem (10.26) is written as follows:

M(q̃k+1)(vk+1 − vk) + hF̃k+θ = pk+1

qk+1 = qk + hvk+θ

q̃k+1 = qk + hγvk

(10.38) {eq:NSCD-discret2}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 48/98

The Nonlinear Term F(t, q, v) The remaining nonlinear term is linearized providing the Jacobian ma-
trices of F(t, q, v) with respect to q and v. This expression depends strongly on the choice of the approx-
imation F̃k+θ. Let us consider a pedagogical example, which is not necessarily the best as the Remark 1
suggests but which is one of the simplest,

F̃k+θ = (1−θ)F(tk, qk, vk) +θF(tk+1, qk+1, vk+1) (10.39) {eq:NL13}

The computation of the Jacobian of F̃k+θ(t, q(u), u) for

q(u) = qk + h[(1−θ)vk +θu]

is given for this example by

∇u F̃k+θ(t, q, u) = θ∇uF(t, q(u), u)

= θ∇qF(tk+1, q(u), u)∇uq(u) +θ∇uF(t, q(u), u)

= hθ2∇qF(t, q(u), u) +θ∇uF(t, q(u), u)

(10.40) {eq:NL12}

The standard tangent stiffness and damping matrices Kt and Ct are defined by

Kt(t, q, u) = ∇qF(t, q, u)

Ct(t, q, u) = ∇uF(t, q, u)
(10.41) {eq:NL14}

In this case, the Jacobian of F̃k+θ(t, q(u), u) may be written as

∇u F̃k+θ(t, q, u) = hθ2Kt(t, q, u) +θCt(t, q, u) (10.42) {eq:NL15}

The complete Newton’s iteration can then be written as

M̂τ+1
k+1 (u

τ+1
k+1 − uτk+1) = R(u

τ
k+1) + pτ+1

k+1 (10.43) {eq:NL16}

where the iteration matrix is evaluated as

M̂τ+1
k+1 = (M(q̃τk+1) + h2θ2Kt(tk+1, qτk+1, uτk+1) +θhCt(t, qτk+1, uτk+1)) (10.44) {eq:NL17}

(compare with (10.17)).

Remark 3 The choice of θ = 0 leads to an explicit evaluation of the position and the nonlinear forces terms.
This choice can be interesting if the time–step has to be chosen relatively small due to the presence a very rapid
dynamical process. This can be the case in crashes applications or in fracture dynamics [?]. In this case, the
iteration matrix reduces to M̂τ+1

k+1 = M(q̃τk+1) avoiding the expensive evaluation of the tangent operator at each
time–step.

This choice must not be misunderstood. The treatment of the nonsmooth dynamics continues to be implicit.

10.3 Schatzman–Paoli ’scheme and its linearizations

10.3.1 The scheme

M(qk)(qk+1 − 2qk + qk−1)− h2F(vk+θ , qk+θ , tk+theta) = pk+1, (10.45a)

vk+1 =
qk+1 − qk−1

2h
, (10.45b)

yk+1 = h
(

qk+1 + eqk−1
1 + e

)
(10.45c)

pk+1 = G
(

qk+1 + eqk−1
1 + e

)
λk+1 (10.45d)

0 ≤ yk+1 ⊥ λk+1 ≥ 0. (10.45e)

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 49/98

10.3.1 Redaction note V. ACARY
Should we have

vk+1 =
qk+1 − qk−1

2h
or

vk+1 =
qk+1 − qk

h
? This question is particularly important for the initialization and the proposed θ-scheme

10.3.2 The Newton linearization

Let us define the residu on q

R(q) = M(q)(q− 2qk + qk−1) + h2F((θv(q) + (1−θ)vk),θq + (1−θ)qk), tk+θ)− pk+1 (10.46) {eq:residu}

with
v(q) =

q− qk−1
2h

(10.47) {eq:residu-linq1}

that is

R(q) = M(q)(q− 2qk + qk−1) + h2F((θ
q− qk−1

2h
+ (1−θ)vk),θq + (1−θ)qk), tk+θ)− pk+1 (10.48) {eq:residu-linq2}

Neglecting ∇q M(q) we get

∇qR(qν) = M(qν) + h2θK(qν , vν) +
1
2

hθC(qν , vν) (10.49) {eq:iterationmatrix}

and we have to solve
∇qR(qν)(qν+1 − qν) = −R(qν). (10.50) {eq:iterationloop}

10.3.3 Linear version of the scheme

M(qk+1 − 2qk + qk−1) + h2(Kqk+θ + Cvk+θ) = pk+1, (10.51a)

vk+1 =
qk+1 − qk−1

2h
, (10.51b)

yk+1 = h
(

qk+1 + eqk−1
1 + e

)
(10.51c)

pk+1 = G
(

qk+1 + eqk−1
1 + e

)
λk+1 (10.51d)

0 ≤ yk+1 ⊥ λk+1 ≥ 0. (10.51e)

Let us define the residu on q

R(q) = M(q− 2qk + qk−1) + h2(K(θq + (1−θ)qk)) + C(θv(q) + (1−θ)vk))− pk+1 (10.52) {eq:residu-linq}

with
v(q) =

q− qk−1
2h

(10.53) {eq:residu-linq1}

that is

R(q) = M(q− 2qk + qk−1) + h2(K(θq + (1−θ)qk))) + h2C(θ
q− qk−1

2h
+ (1−θ)vk))− pk+1 (10.54) {eq:residu-linq2}

In this linear case, assuming that q0 = qν = qk, we get

R(qν) = M(−qk + qk−1) + h2(Kqk) + h2C(θ
qk − qk−1

2h
+ (1−θ)vk))− pk+1 (10.55) {eq:residu-linq2}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 50/98

10.4 What about mixing OnestepIntegrator in Simulation?
{Sec:MisingOSI}

Let us consider that we have two simple linear Lagrangian Dynamical systems{
M1v̇1 = F1,Ext(t) + p1

q̇1 = v1
(10.56) {eq:FullyLinear1}

and {
M2v̇2 = F2,Ext(t) + p2

q̇2 = v2
(10.57) {eq:FullyLinear1}

These Dynamical systems (10.57) and (10.57) might numerically solved by choosing two different time–
stepping schemes. Let us choose for instance Moreau’s scheme for(10.57){

M1(v1,k+1 − v1,k) = F1,Ext(tk+1) + p1,k+1

q1,k+1 = qk + hv1,k+θ
(10.58) {eq:FullyLinear1-TS}

and Schatzman–Paoli’s sheme for (10.57)M2(q2,k+1 − 2q2,k + q2,k−1) = F2,Ext(tk+1) + p2,k+1

v2,k+1 =
q2,k+1 − q2,k−1

2h
(10.59) {eq:FullyLinear1-TS}

Let us consider known that we have a LagrangianLinearTIR between this two DSs such that

y = q1 − q2 ≥ 0

p =

[
1
−1

]
λ

(10.60) {eq:LTIR-2DS}

and a complementarity condition
0 ≤ y ⊥ λ ≥ 0 (10.61) {eq:CP}

Many questions are raised when we want to deal with the discrete systems:

• Which rules should we use for the discretization of (10.61) ?

if ȳk+1 ≤ 0, then 0 ≤ ẏk+1 + eẏk ⊥ λ̂k+1 ≥ 0 (10.62) {eq:CP-TS1}

or
0 ≤ yk+1 + eyk−1 ⊥ λ̃k+1 ≥ 0 (10.63) {eq:CP-TS2}

• Should we assume that yk+1 = q1,k+1 − q2,k+1 and ẏk+1 = v1,k+1 − v2,k+1

• How can we link λ̂k+1 and λ̃k+1 with p1,k+1 and p2,k+1 ?

The third is the more difficult question and is seems that it is not reasonable to deal with two DS
related by one interaction with different osi.In practice, this should be avoided in Siconos.

file DevNotes.tex – 2018-03-14 11:18

Chapter 11

NewtonEuler Dynamical Systems

Author O. Bonnefon 2010
Revision section ?? to ?? V. Acary 05/09/2011
Revision section ?? V. Acary 01/06/2016
Revision complete edition V. Acary 06/01/2017

11.1 The equations of motion

In the maximal coordinates framework, the most natural choice for the kinematic variables and for the
formulation of the equations of motion is the Newton/Euler formalism, where the equation of motion
describes the translational and rotational dynamics of each body using a specific choice of parameters.
For the translational motion, the position of the center of mass xg ∈ IR3 and its velocity vg = ẋg ∈ IR3

is usually chosen. For the orientation of the body is usually defined by the rotation matrix R of the
body-fixed frame with respect to a given inertial frame.

For the rotational motion, a common choice is to choose the rotational velocity Ω ∈ IR3 of the body
expressed in the body–fixed frame. This choice comes from the formulation of a rigid body motion of a
point X in the inertial frame as

x(t) = Φ(t, X) = xg(t) + R(t)X. (11.1) {eq:1}

The velocity of this point can be written as

ẋ(t) = vg(t) + Ṙ(t)X (11.2) {eq:2}

Since R>R = I, we get R>Ṙ + Ṙ>R = 0. We can conclude that it exists a matrix Ω̃ := R>Ṙ such that
Ω̃+ Ω̃> = 0, i.e. a skew symmetric matrix. The notation Ω̃ comes from the fact that there is a bijection
between the skew symmetric matrix in IR3×3 and IR3 such that

Ω̃x = Ω× x, ∀x ∈ IR3. (11.3) {eq:3}

The rotational velocity is then related to the R by :

Ω̃ = R>Ṙ, or equivalently, Ṙ = RΩ̃ (11.4) {eq:angularvelocity}

Using these coordinates, the equations of motion are given by
m v̇g = f (t, xg, vg, R, Ω)

IΩ̇+Ω× IΩ = M(t, xg, vg, R, Ω)
ẋg = vg
Ṙ = RΩ̃

(11.5) {eq:motion-NewtonEuler}

where m > 0 is the mass, I ∈ IR3×3 is the matrix of moments of inertia around the center of mass and
the axis of the body–fixed frame.

51

Siconos Development team – Notes 52/98

The vectors f (·) ∈ IR3 and M(·) ∈ IR3 are the total forces and torques applied to the body. It is
important to outline that the total applied forces f (·) has to be expressed in a consistent frame w.r.t. to
vg. In our case, it hae to be expressed in the inertial frame. The same applies for the moment M that has
to be expressed in the body-fixed frame. If we consider a moment m(·) expressed in the inertial frame,
then is has to be convected to the body–fixed frame thanks to

M(·) = R>m(·) (11.6) {eq:convected_moment}

Remark 4 If we perform the time derivation of RR> = I rather than R>R = I, we get RṘ> + ṘR> = 0. We
can conclude that it exists a matrix ω̃ := ṘR> such that ω̃+ ω̃> = 0, i.e. a skew symmetric matrix. Clearly, we
have

ω̃ = RΩ̃R> (11.7) {eq:4}

and it can be proved that is equivalent toω = RΩ. The vectorω is the rotational velocity expressed in the inertial
frame. The equation of motion can also be expressed in the inertial frame as follows

m v̇g = f (t, xg, vg, R, RTω)
J(R)ω̇+ω× J(R)ω = m(t, xg, vg, R,ω)

ẋg = vg
Ṙ = ω̃R

(11.8) {eq:motion-NewtonEuler-inertial}

where the matrix J(R) = RIRT is the inertia matrix in the inertial frame. Defining the angular momentum with
respect to the inertial frame as

π(t) = J(R(t))ω(t) (11.9) {eq:1}

the equation of the angular motion is derived from the balance equation of the angular momentum

π̇(t) = m(t, xg, vg, R,ω)). (11.10) {eq:5}

For a given constant (time invariant) Ω̃, let us consider the differential equation{
Ṙ(t) = RΩ̃

R(0) = I
(11.11) {eq:5}

Let us recall the definition of the matrix exponential,

exp(A) =
∞
∑
k=0

1
k!

Ak (11.12) {eq:6}

A trivial solution of (11.11) is R(t) = exp(tΩ̃) since

d
dt
(exp(At)) = exp(At)A. (11.13) {eq:7}

More generally, with the initial condition R(t0) = R0, we get the solution

R(t) = R0 exp((t− t0)Ω̃) (11.14) {eq:8}

Another interpretation is as follows. From a (incremental) rotation vector, Ω and its associated matrix
Ω̃, we obtain a rotation matrix by the exponentation of Ω̃:

R = exp(Ω̃). (11.15) {eq:9}

Since we note that Ω̃3 = −θ2Ω̃ withθ = ‖Ω‖, it is possible to get a closed form of the matrix exponential
of Ω̃

exp(Ω̃) =
∞
∑
k=0

1
k!
(Ω̃)k

= I3×3 +
∞
∑
k=1

(−1)k−1

(2k− 1)!
θ2k−1Ω̃+ (

∞
∑
k=0

(−1)k−1

(2k)!
θ)2k−2Ω̃2

= I3×3 +
sinθ
θ

Ω̃+
(cosθ− 1)

θ2 Ω̃2

(11.16) {eq:10}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 53/98

that is

R = I3×3 +
sinθ
θ

Ω̃+
(cosθ− 1)

θ2 Ω̃2 (11.17) {eq:11}

The formula (11.17) is the Euler–Rodrigues formula that allows to compute the rotation matrix on closed
form.

11.1.1 Redaction note V. ACARY
todo :

• add the formulation in the inertial frame of the Euler equation with ω = RΩ.

• Check that (11.16) is the Euler-Rodrigues formula and not the Olinde Rodrigues formula.
(division by θ)

In the numerical practice, the choice of the rotation matrix is not convenient since it introduces re-
dundant parameters. Since R must belong to SO+(3), we have also to satisfy det(R) = 1 and R−1 = R>.
In general, we use a reduced vector of parameters p ∈ IRnp such R = Φ(p) and ṗ = ψ(p)Ω. We denote
by q the vector of coordinates of the position and the orientation of the body, and by v the body twist:

q :=
[

xg
p

]
, v :=

[
vg
Ω

]
. (11.18)

The relation between v and the time derivative of q is

q̇ =

[
ẋg

ψ(p) ṗ

]
=

[
I 0
0 ψ(p)

]
v := T(q)v (11.19) {eq:TT}

with T(q) ∈ IR3+np×6. Note that the twist v is not directly the time derivative of the coordinate vector as
a major difference with Lagrangian systems.

The Newton-Euler equation in compact form may be written as:

{
q̇ = T(q)v,
Mv̇ = F(t, q, v)

(11.20) {eq:Newton-Euler-compact}

where M ∈ IR6×6 is the total inertia matrix

M :=
(

mI3×3 0
0 I

)
, (11.21)

and F(t, q, v) ∈ IR6 collects all the forces and torques applied to the body

F(t, q, v) :=
(

f (t, xg, vg, R, Ω)
IΩ×Ω+ M(t, xg, vg, R, Ω)

)
. (11.22)

When a collection of bodies is considered, we will use the same notation as in (11.20) extending the
definition of the variables q, v and the operators M, F in a straightforward way.

11.2 Basic elements of Lie groups and Lie algebras theory.

Let us recall the definitions of the Lie group Theory taken from [2] and [4].

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 54/98

11.2.1 Differential equation (evolving) on a manifoldM
Definition 2 A d-dimensional manifoldM is a d-dimensional smooth surface M ⊂ IRn for some n ≥ d.

Definition 3 Let M be a d-dimensional manifold and suppose that ρ(t) ∈ M is a smooth curve such that
ρ(0) = p. A tangent vector at p is defined as

a =
d
dt
(ρ(t))

∣∣∣∣
t=0

. (11.23) {eq:12}

The set of all tangents at p is called the tangent space at p and denoted by TM|p. It has the structure of a linear
space.

Definition 4 A (tangent) vector field onM is a smooth function F : M → TM such that F(p) ∈ TM|p for
all p ∈ M. The collection of all vector fields onM is denoted by X (M).

Definition 5 (Differential equation (evolving) on M) Let F be a tangent vector field onM. By a differen-
tial equation (evolving) onM we mean a differential equation of the form

ẏ = F(y), t ≥ 0, y(0) ∈ M (11.24) {eq:13}

where F ∈ X (M). Whenever convenient, we allow F in (11.24) to be a function of time, F = F(t, y). The flow
of F is the solution operator Ψt,F :M→M such that

y(t) = Ψt,F(y0). (11.25) {eq:14}

11.2.2 Lie algebra and Lie group

Definition 6 (commutator) Given two vector fields F, G on IRn , the commutator H = [F, G] can be computed
componentwise at a given point yIRn as

Hi(y) =
n

∑
j=1

G j(y)
∂Fi(y)

∂y j
Fj(y)

∂Gi(y)
∂y j

. (11.26) {eq:15}

{lemma:LieBracket}
Lemma 1 The commutator of vector fields satisfies the identities

[F, G] = [G, F] (skewsymmetry),
[αF, G] = α[F, G],α ∈ IR
[F + G, H] = [F, H] + [G, H] (bilinearity),
0 = [F, [G, H]] + [G, [H, F]] + [H, [F, G]] (Jacobisidentity).

(11.27) {eq:16}

Definition 7 A Lie algebra of vector fields is a collection of vector fields which is closed under linear combination
and commutation. In other words, letting g denote the Lie algebra,

B ∈ g =⇒ αB ∈ g for allαR.
B1, B2 ∈ g =⇒ B1 + B2, [B1, B2] ∈ g

(11.28) {eq:17}

Given a collection of vector fields B = B1, B2, . . ., the least Lie algebra of vector fields containing B is called
the Lie algebra generated by B

Definition 8 A Lie algebra is a linear space V equipped with a Lie bracket, a bilinear, skew-symmetric mapping

[·, ·] : V ×V → V (11.29) {eq:18}

that obeys identities (11.27) from Lemma 1

Definition 9 ((General) Lie algebra) A Lie algebra homomorphism is a linear map between two Lie algebras,
ϕ : g→ h, satisfying the identity

ϕ([v, w]g) = [ϕ(v),ϕ(w)]h, v, wing. (11.30) {eq:19}

An invertible homomorphism is called an isomorphism.

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 55/98

Definition 10 A Lie group is a differential manifold G equipped with a product · : G × G → G satisfying

p · (q · r) = (p · q) · r, ∀p, q, rG (associativity)
∃I ∈ G such that I · p = p · I = p, ∀p ∈ G (identity element)
∀p ∈ G , ∃p−1 ∈ G such that p−1 · p = I (inverse)
The maps(p, r)→ p · r and p→ p−1are smooth functions (smoothness)

(11.31) {eq:20}

Definition 11 (Lie algebra g of a Lie group G) The Lie algebra g of a Lie group G is defined as the linear space
of all tangents to G at the identity I. The Lie bracket in g is defined as

[a, b] =
∂2

∂s∂t
ρ(s)σ(t)ρ(−s)

∣∣∣∣
s=t=0

(11.32) {eq:21}

where ρ(s) and σ(t) are two smooth curves on G such that ρ(0) = σ(0) = I, and ρ̇(0) = a and σ̇(0) = b.

11.2.3 Actions of a group G on manifoldM
Definition 12 A left action of Lie Group G on a manifoldM is a smooth map Λl : G ×M→M satisfying

Λl(I, y) = y, ∀y ∈ M
Λl(p, Λ(r, y)) = Λl(p · r, y), ∀p, r ∈ G , ∀y ∈ M.

(11.33) {eq:22}

Definition 13 A right action of Lie Group G on a manifoldM is a smooth map Λr :M×G →M satisfying

Λr(y, I) = y, ∀y ∈ M
Λr(Λ(y, r), p) = Λr(y, r · p), ∀p, r ∈ G , ∀y ∈ M. (11.34) {eq:23}

A given smooth curve S(·) : t ∈ IR 7→ S(t) ∈ G in G such that S(0) = I produces a flow Λl(S(t), ·)
(resp. Λr(·, S(t))) onM and by differentiation we find a tangent vector field

F(y) =
d
dt
(Λl(S(t), y)

∣∣∣∣
t=0

(resp. F(y) =
d
dt
(Λr(y, S(t))

∣∣∣∣
t=0

) (11.35) {eq:24}

that defines a ordinary differential equation on a Lie Group

ẏ(t) = F(y(t)) =
d
dt
(Λl(S(t), y)

∣∣∣∣
t=0

(resp. ẏ(t) = F(y(t)) =
d
dt
(Λr(y, S(t))

∣∣∣∣
t=0

) (11.36) {eq:25}

Lemma 2 Let λl
∗ : g→ X (M) (resp. λr

∗ : g→ X (M) be defined as

λl
∗(a)(y) =

d
ds

Λl(ρ(s), y)
∣∣∣∣
s=0

(resp. λr
∗(a)(y) =

d
ds

Λr(y,ρ(s))
∣∣∣∣
s=0

) (11.37) {eq:26}

where ρ(s) is a curve in G such that ρ(0) = I and ρ̇(0) = a. Then λl
8 is a linear map between Lie algebras such

that
[a, b]g = [λl

∗(a), λl
∗(b)]X (M). (11.38) {eq:27}

The following product between an element of an algebra a ∈ g with an element of a groupσ ∈ G can
be defined. This will served as a basis for defining the exponential map.

Definition 14 We define the left product (·, ·)l : g× G → G of an element of an algebra a ∈ g with an element
of a group σ ∈ G as

(a,σ)l = a ·σ =
d
ds
ρ(s) ·σ

∣∣∣∣
s=0

(11.39) {eq:28}

where ρ(s) is a smooth curve such that ρ̇(0) = a and ρ(0) = I. In the same way, we can define the right product
(·, ·)r : G × g→ G

(σ , a)r = σ · a =
d
ds
σ · ρ(s)

∣∣∣∣
s=0

(11.40) {eq:29}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 56/98

11.2.4 Exponential map

Definition 15 Let G be a Lie group and g its Lie algebra. The exponential mapping exp : g → G is defined as
exp(a) = σ(1) where σ(t) satisfies the differential equation

σ̇(t) = a ·σ(t), σ(0) = I. (11.41) {eq:30}

Let us define ak as  ak = a · a · . . . a · a︸ ︷︷ ︸
k times

for k ≥ 1

a0 = I
(11.42) {eq:31}

The exponential map can be expressed as

exp(at) =
∞
∑
k=0

(ta)k

k!
(11.43) {eq:32}

since it is a solution of (11.41). A simple computation allows to check this claim:

d
dt

exp(at) =
∞
∑
k=1

ktk−1 ak

k!
= a ·

∞
∑
k=0

tk ak

k!
= a · exp(at). (11.44) {eq:33}

A similar computation gives

d
dt

exp(at) =
∞
∑
k=0

tk ak

k!
· a = exp(at) · a. (11.45) {eq:34}

The exponential mapping exp : g → G can also be defined as exp(a) = σ(1) where σ(t) satisfies the
differential equation

σ̇(t) = σ(t) · a, σ(0) = I. (11.46) {eq:35}
{Theorem:solutionofLieODE}

Theorem 1 Let Λl : G ×M → M be a left group action and λl : g → X (M) the corresponding Lie algebra
homomorphism. For any a ∈ g the flow of the vector field F = λl

a(a), i.e. the solution of the equation

ẏ(t) = F(y(t)) = λl
∗(a)(y(t)), t ≥ 0, y(0) = y0 ∈ M, (11.47) {eq:36}

is given as
y(t) = Λl(exp(ta), y0). (11.48) {eq:37}

Let Λr : M×G → M be a right group action and λr : g → X (M) the corresponding Lie algebra homomor-
phism. For any a ∈ g the flow of the vector field F = λr

∗(a), i.e. the solution of the equation

ẏ(t) = F(y(t)) = λr
∗(a)(y(t)), t ≥ 0, y(0) = y0 ∈ M, (11.49) {eq:38}

is given as
y(t) = Λr(y0, exp(ta)). (11.50) {eq:39}

11.2.5 Translation (Trivialization) maps

The left and right translation maps defined by

Lz : G × G → G (left translation map)
y 7→ z · y (11.51) {eq:148}

and
Rz(y) : G × G → G (right translation map)

y 7→ y · z (11.52) {eq:149}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 57/98

If we identify the manifoldMwith the group G, The left and right translations can be interpreted as
the simplest example of group action on the manifold. Note that the left translation map can be viewed
as a left or right action on the group.

If we consider Lz(y) as a right group action Lz(y) = Λr(z, y) = z · y, by differentiation we get a
L′z : Tg ∼= g→ TzG with ρ̇(0) = a such that

λr
∗(a)(z) = L′z(a) =

d
ds

Λr(z,ρ(s))
∣∣∣∣
s=0

= z · a (11.53) {eq:150}

The map
L′z : g → TzG

a 7→ z · a (11.54) {eq:152}

determines an isomorphism of g with the tangent space TzG. In other words, the tangent space can be
identified to g as

TzG = {L′z(a) = z · a | a ∈ g} (11.55) {eq:153}

Respectively, if we consider Rz(y) as a left group action Rz(y) = Λl(y, z) = y · z, by differentiation
we get a R′z : Tg ∼= g→ TzG with ρ̇(0) = a such that

λl
∗(a)(z) = R′z(a) =

d
ds

Λl(ρ(s), z)
∣∣∣∣
s=0

= a · z (11.56) {eq:150}

The map
R′z : g → TzG

a 7→ a · z (11.57) {eq:152}

determines an isomorphism of g with the tangent space TzG. In other words, the tangent space can be
identified to g as

TzG = {R′z(a) = a · z | a ∈ g} (11.58) {eq:153}

Any tangent vector F : G → TzG can be written in either of the forms

F(z) = L′z(f (a)) = R′z(g(z)) (11.59) {eq:155}

where f , gG → g.

11.2.6 Adjoint representation

Definition 16 Let p ∈ G and letσ(t) be a smooth curve on G such thatσ(0) = I and σ̇(0) = b ∈ g. The adjoint
representation is defined as

Adp(b) =
d
dt

pσ(t)p−1
∣∣∣∣
t=0

(11.60) {eq:40}

The derivative of Ad with respect to the first argument is denoted ad. Let ρ(s) be a smooth curve on G such that
ρ(0) = I and ρ̇(0) = a, it yields:

ada(b) =
d
ds

Adρ(s)(b)
∣∣∣∣
s=0

= [a, b] (11.61) {eq:41}

The adjoint representation can also be expressed with the map

Adp(b) = (Lp · Rp−1)′(b) = (L′p · R′p−1)(b) = p · b · p−1 (11.62) {eq:154}

For a tangent vector given in (11.59), we have

g(z) = Adz(f (z)) (11.63) {eq:151}

Another important relation relating Ad, ad and exp is

Adexp(a) = exp ada (11.64) {eq:164}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 58/98

11.2.7 Differential of the exponential map

There are multiple ways to represent the differential of exp(·) at a point a ∈ g. Let us start by the
following definition of the differential map at a ∈ g

exp′a : g→ Texp(a)G

v 7→ exp′a(v) =
d
dt

exp(a + tv)
∣∣∣∣
t=0

(11.65) {eq:147}

The definition is very similar to the definition of the directional derivative of exp in the direction v ∈ g
at a point a ∈ g. Using the expression (11.58) of the tangent space at exp(a), we can defined another
expression of the differential map denoted as dlexpa : g→ g such that

dlexpa = L′exp−1(a) · exp′a = L′exp(−a) · exp′a (11.66) {eq:156}

This expression appears as a trivialization of the differential map exp′a. Using the expression of L′z in
(11.57). In [4, Theorem 2.14.13], an explicit formula relates dlexpa to the iteration of the adjoint operator:

dlexpa(b) =
∞
∑
k=0

(−1)k

(k + 1)!
(ada(b))k :=

e− exp · ada

ada
(b) (11.67) {eq:43}

where (ada)
k is the kth iteration of the adjoint operator:

(ada)
k(b) = [a, [a, [. . . , a, [a, b]]]︸ ︷︷ ︸

k times

for k ≥ 1

(ada)
0(b) = b

(11.68) {eq:44}

It is also possible to define the right trivialized differential of the exponential map

drexpa = R′exp−1(a) · exp′a = R′exp(−a) · exp′a (11.69) {eq:162}

that is
drexpa(b) = exp′a(b) · exp(−a) (11.70) {eq:163}

With these expression, we have equivalently for

exp′a(b) = expa · d
lexpa(b) and exp′a(b) = drexpa(b) · exp(a) (11.71) {eq:157}

To avoid to burden to much the notation, we introduced the unified definition of the differential map
that corresponds to dexp = drexp

Definition 17 The differential of the exponential mapping, denoted by dexpa : g× g→ g is defined as the “right
trivialized” tangent of the exponential map

d
dt
(exp(a(t))) = dexpa(t)(a′(t)) exp(a(t)) (11.72) {eq:42}

An explicit formula relates dexpa to the iteration of the adjoint operator:

dexpa(b) =
∞
∑
k=0

1
(k + 1)!

(ada(b))k :=
exp · ada−e

ada
(b) (11.73) {eq:43}

11.2.1 Redaction note V. ACARY
Say what is not the Jacobian in IR4

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 59/98

As for Ada and ada, the mapping dexpa(b) is a linear mapping in its second argument for a fixed a.
Using the relation (11.64), we can also relate the right and the lest trivialization tangent

dlexpa(b) = (Adexp(a) · dexp(a))(b) = (exp(ad−a) ·
e− exp · ada

ada
)(b) =

e− exp · ad−a

ada
(b) = dexp−a(b)

(11.74) {eq:165}
It is also possible to define the the “left trivialized” tangent of the exponential map

d
dt
(exp(a(t))) = exp(a(t)) dlexpa(t)(a′(t)) = exp(a(t)) dexp−a(t)(a′(t)) (11.75) {eq:46}

11.2.2 Redaction note V. ACARY
other notation and Lie derivative

D f · Ω̂(p) = (Ω̂r f)(p) (11.76) {eq:178}

Inverse of the exponential map The function dexpa is an analytical function so it possible to invert it
to get

dexp−1
a =

∞
∑
k=0

Bk
(k)!

(ada)
k(b) (11.77) {eq:45}

where Bk are the Bernouilli number.

11.2.8 Differential of a map f : G → g

We follow the notation developed in [3]. Let us first define the differential of the map f : G → g as

f ′z : TzG → Tf (z)g
∼= g

b 7→ d
dt

f (z · exp(tL′z−1(b)))
∣∣∣∣
t=0

(11.78) {eq:166}

The image of b by f ′z is obtained by first identifying b with an element of v ∈ g thanks to the left
representation of Tf (z)g view the left translation map v = tL′z(b). The exponential mapping transforms
v an element y of the Lie Group G. Then f ′z is obtained by

f ′z(b) = lim
t→0

f (z · y)− f (z)
t

(11.79) {eq:167}

As we have done for the exponential mapping, it is possible to get a left trivialization of

d fz = (f · Lz)
′ = f ′z · L′z (11.80) {eq:169}

thus

d fz(a) = f ′z · L′z(a) = f ′z(L′z(a)) =
d
dt

f (z · exp(ta))
∣∣∣∣
t=0

(11.81) {eq:170}

Newton Method Let us imagine that we want to solve f (y) = 0 for y ∈ G. A newton method can be
written as

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 60/98

11.3 Lie group SO(3) of finite rotations and Lie algebra so(3) of in-
finitesimal rotations

The presentation is this section follows the notation and the developments taken from [2?]. For more
details on Lie groups and Lie algebra, we refer to [4] and [?].

The Lie group SO(3) is the group of linear proper orthogonal transformations in IR3 that may be
represented by a set of matrices in IR3×3 as

SO(3) = {R ∈ IR3×3 | RTR = I, det(R) = +1} (11.82) {eq:47}

with the group law given by R1 · R2 = R1R2 for R1, R2 ∈ SO(3). The identity element is e = I3×3. At
any point of R ∈ SO(3), the tangent space TRSO(3) is the set of tangent vectors at a point R.

Left representation of the tangent space at R, TRSO(3) Let S(t) be a smooth curve S(·) : IR→ SO(3)
in SO(3). An element a of the tangent space at R is given by

a =
d
dt

S(t)
∣∣∣∣
t=0

(11.83) {eq:174}

such that S(0) = R. Since S(t) ∈ SO(3), we have
d
dt
(S(t)) = Ṡ(t)ST(t) + S(t)ṠT(t) = 0. At t = 0, we

get aRT + RaT = 0. We conclude that it exists a skew–symmetric matrix Ω̃ = RTa such that Ω̃T + Ω̃ = 0.
Hence, a possible representation of TRSO(3) is

TRSO(3) = {a = RΩ̃ ∈ IR3×3 | Ω̃T + Ω̃ = 0}. (11.84) {eq:49}

For R = I, the tangent space is directly given by the set of skew–symmetric matrices:

TI SO(3) = {Ω̃ ∈ IR3×3 | Ω̃T + Ω̃ = 0}. (11.85) {eq:50}

The tangent space TI SO(3) with the Lie Bracket [·, ·] defined by the matrix commutator

[A, B] = AB− BA (11.86) {eq:51}

is a Lie algebra that is denoted by

so(3) = {Ω ∈ IR3×3 | Ω+ Ω̃T = 0}. (11.87) {eq:53}

For skew symmetric matrices, the commutator can be expressed with the cross product in IR3

[Ω̃, Γ̃] = Ω̃Γ̃ − Γ̃ Ω̃ = Ω̃× Γ (11.88) {eq:52}

We use TI SO(3) ∼= so(3) whenever there is no ambiguity.
The notation Ω̃ is implied by the fact that the Lie algebra is isomorphic to IR3 thanks to the operator

(̃·) : IR3 → so(3) and defined by

(̃·) : Ω 7→ Ω̃ =

 0 −Ω3 Ω2
Ω3 0 −Ω1
−Ω2 Ω1 0

 (11.89) {eq:54}

Note that Ω̃x = Ω× x.

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 61/98

A special (right) action of Lie Group G on a manifoldM. Let us come back to the representation of
TRSO(3) given in (11.84). It is clear it can expressed with a representation that relies on so(3)

TRSO(3) = {a = RΩ̃ ∈ IR3×3 | Ω̃ ∈ so(3)}. (11.90) {eq:58}

With (11.90), we see that there is a linear map that relates TRSO(3) to so(3). This can be formalize by
noting that the left translation map for a point R ∈ SO(3)

LR : SO(3)→ SO(3)
S 7→ LR(S) = R · S = RS (11.91) {eq:59}

which is diffeomorphism on SO(3) is a group action. In our case, we identify the manifold and the
group. Hence, the mapping LR can be viewed as a left or a right group action. We choose a right action
such that Λr(R, S) = LR(S) = R · S. By differentiation, we get a mapping L′R : TIso(3) ∼= so(3) →
TRSO(3). For a given Ω̃ ∈ so(3) and a point R, the differential L′R by computing the tangent vector field
λr
∗(a)(R) of the group action Λr(R, S) for a smooth curve S(t) : IR→ S0(3) such that Ṡ(0) = Ω̃:

λr
∗(a)(R) :=

d
dt

Λr(R, S(t))
∣∣∣∣
t=0

=
d
dt

LR(S(t))
∣∣∣∣
t=0

=
d
dt

R · S(t)
∣∣∣∣
t=0

= R · Ṡ(0) = RΩ̃ ∈ X(M) (11.92) {eq:60}

Therefore, the vector field in (11.92) is a tangent vector field that defines a Lie-Type ordinary differential
equation

Ṙ(t) = λr
∗(a)(R(t)) = R(t)Ω̃ (11.93) {eq:61}

In [1], the linear operator λr
∗(a) is defined as the directional derivative with respect to S an denoted

DLR(S). It defines a diffeomorphism between TSSO(3) and TRSSO(3). In particular, for S = I3×3, we
get

DLR(I3×3) : so(3) → TRSO(3)
Ω̃ 7→ DLR(I3×3).Ω̃ = RΩ̃

(11.94) {eq:62}

We end up with a possible representation of TRSO(3) as

TRSO(3) = {Ω̃R | Ω̃R = DLR(I3×3).Ω̃ = RΩ̃, Ω̃ ∈ so(3)}. (11.95) {eq:63}

In other words, a tangent vector Ω̃ ∈ so(3) defines a left invariant vector field on SO(3) at the point R
given by RΩ̃.

11.3.1 Redaction note V. ACARY
what happens at S(0) = R, with a = RΩ̃ = Ṡ(0) and then ẏ(t) = F(y(t)) = RΩ̃y(t) = RΩ ×
y(t) = Ṡ(0)y(t). What else ?

Exponential map expm so(3) → SO(3) The relations (11.35) and (11.36) shows that is possible to
define tangent vector field from a group action. We can directly apply Theorem 1 and we get that the
solution of {

Ṙ(t) = λr
∗(a)(R(t)) = R(t)Ω̃

R(0) = R0
(11.96) {eq:130}

is
R(t) = R0 expm(tΩ̃) (11.97) {eq:138}

Let us do the computation in this case. Let us assume that the solution can be sought as R(t) =
Λr(yo, S(t)). The initial condition imposes that R(0) = R0 = Λ(R0, I) = Λ(R0, S(0)) that implies

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 62/98

S(0) = I. Since Λ(R0, S(t)) is the flow that is produces by S(t) and let us try to find the relation satisfied
by S(·). For a smooth curve T(s) ∈ SO(3) such that Ṫ(0) = Ω̃, we have

Ṙ(t) = λr
∗(Ω̃)(R(t)) =

d
ds

Λr(R(t), T(s))
∣∣∣∣
s=0

=
d
ds

Λr(Λ(R0, S(t)), T(s))
∣∣∣∣
s=0

=
d
ds

(Λr(R0, S(t) · T(s))
∣∣∣∣
s=0

= D2Λ
r(R0, ·S(t) · Ṫ(0))

= D2Λ
r(R0, S(t) · Ω̃)

(11.98) {eq:64}

On the other side, the relation y(t) = Λr(y0, S(t)) gives ẏ(t) = D2Λ
r(y0, S′(t)) and we conclude that{

Ṡ(t) = S(t) · Ω̃ = S(t)Ω̃
S(0) = I.

(11.99) {eq:65}

The ordinary differential equation (11.99) is a matrix ODE that admits the following solution

S(t) = expm(tΩ̃) (11.100) {eq:66}

where exp : IR3×3 → IR3×3 is the matrix exponential defined by

expm(A) =
∞
∑
k=0

1
k!
(A)k. (11.101) {eq:67}

We conclude that R(t) = Λ(R0, S(t)) = R0 expm(tΩ̃) is the solution of (11.46).
We can use the closed form solution for the matrix exponential of tΩ̃ ∈ so(3) as

expm(tΩ̃) = I3×3 +
sin tθ
θ

Ω̃+
(cos tθ− 1)

θ2 Ω̃2 (11.102) {eq:68}

with θ = ‖Ω‖. For given Ω̃ ∈ so(3), we have

det(Ω̃) = det(Ω̃T) = det(−Ω̃T) = (−1)3 det(Ω̃) = − det(Ω̃) (11.103) {eq:69}

that implies that det(Ω̃) = 0. From (11.102), we conclude that

det(expm(tΩ̃)) = 1. (11.104) {eq:70}

Furthermore, we have expm(tΩ̃) expm(−tΩ̃) = expm(t(Ω̃− Ω̃)) = I. We can verify that expm(tΩ̃) ∈
SO(3).

Adjoint representation In the case of SO(3), the definition of the operator Ad gives

AdR(Ω̃) = RΩ̃RT (11.105) {eq:121}

and then mapping adΩ̃(Γ̃) is defined by

adΩ̃(Γ̃) = Ω̃Γ̃ − Γ̃ Ω̃ = [Ω̃, Γ̃] = Ω̃× Γ . (11.106) {eq:56}

Using the isomorphism between so(3) and IR3, it possible the define the mapping adΩ(Γ) : IR3 × IR3 →
IR3 with the realization of the Lie algebra in IR3 as

adΩ(Γ) = Ω̃Γ = Ω× Γ (11.107) {eq:55}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 63/98

Differential of the exponential map dexpm The differential of the exponential mapping, denoted by
dexpm is defined as the ’right trivialized’ tangent of the exponential map

d
dt
(exp(Ω̃(t))) = dexpΩ̃(t)(

dΩ̃(t)
dt

) exp(Ω̃(t)) (11.108) {eq:71}

The differential of the exponential mapping, denoted by dexpm is defined as the ’left trivialized’
tangent of the exponential map

d
dt
(exp(Ω̃(t))) = dexpΩ̃(t)(

dΩ̃(t)
dt

) exp(Ω̃(t)) (11.109) {eq:72}

Using the formula (11.73) and the fact that adΩ(Γ) = Ω̃Γ , we can write the differential as

dexpΩ̃(Γ̃) =
∞
∑
k=0

1
(k + 1)!

adk
Ω̃
(Γ̃)

=
∞
∑
k=0

1
(k + 1)!

Ω̃k Γ̃

(11.110) {eq:122}

Using again the fact that Ω̃3 = −θ2Ω̃, we get

dexpΩ̃ =
∞
∑
k=0

1
(k + 1)!

Ω̃k

= I +
∞
∑
k=0

(−1)k

((2(k + 1))!
θ2kΩ̃+

∞
∑
k=0

(−1)k

((2(k + 1) + 1)!
θ2kΩ̃2

(11.111) {eq:123}

Hence, we get

dexpΩ̃ = I +
(1− cos(θ))

θ2 Ω̃+
(θ− sin(θ))

θ3 Ω̃2 (11.112) {eq:124}

Since dexpΩ̃ is a linear mapping from so(3) to so(3), we will use the following notation

dexpΩ̃ Γ̃ := T(Ω)Γ̃ (11.113) {eq:172}

with

T(Ω) := I +
(1− cos(θ))

θ2 Ω̃+
(θ− sin(θ))

θ3 Ω̃2 ∈ IR3×3 (11.114) {eq:173}

11.3.1 Newton method and differential of a map f : G → g

Finally, let us define the differential of the map f : SO(3)→ so(3) as

f ′R : TRSO(3) → Tf (R)so(3) ∼= so(3)

a 7→ d
dt

f (R · expm(tL′R−1(a)))
∣∣∣∣
t=0

(11.115) {eq:183}

The image of b by f ′z is obtained by first identifying a with an element of Ω̃ ∈ so(3) thanks to the
left representation of Tf (R)so(3) view the left translation map Ω̃ = tL′R(b). The exponential mapping
transforms Ω̃ an element S of the Lie Group SO(3). Then f ′z is obtained by

f ′R(b) = lim
t→0

f (R · S)− f (R)
t

(11.116) {eq:184}

As we have done for the exponential mapping, it is possible to get a left trivialization of

d fR = (f ◦ LR)
′ = f ′R ◦ L′R (11.117) {eq:185}

thus

d fR(Ω̃) = f ′R ◦ L′R(Ω̃) = f ′R(L′R(Ω̃)) =
d
dt

f (R · expm(tΩ̃))

∣∣∣∣
t=0

(11.118) {eq:186}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 64/98

11.3.2 Redaction note V. ACARY
The computation of this differential is non linear with respect to Ω̃.

not clear if we write d fR(Ω̃). Better understand the link with dexpΩ̃ Γ̃

Sometimes, it can be formally written as

d fR(Ω̃) = C(Ω̃)Ω̃ (11.119) {eq:180}

Nevertheless, an explicit expression of C(·) is not necessarily trivial.
Let us consider a first simple example of a mapping f (R) = R̃x for a given x ∈ IR3. The computation

yields

d fR(Ω̃) =
˜d

dt
R exp(tΩ̃)x

∣∣∣∣
t=0

=
˜

R
d
dt

exp(tΩ̃)

∣∣∣∣
t=0

x

= ˜R dexpΩ̃(Ω̃) exp(tΩ̃)
∣∣
t=0 x

= ˜R dexpΩ̃(Ω̃)x

= ˜RT(Ω)Ω̃x

= ˜−RT(Ω)x̃Ω

(11.120) {eq:181}

In that case, it is difficult to find a expression as in (11.119), but considering the function g(R) such that
f (R) = g̃(x) we get

d gR(Ω̃) = −RT(Ω)x̃Ω = C(Ω)Ω (11.121) {eq:181}

with
C(Ω) = −RT(Ω)x̃ (11.122) {eq:182}

11.4 Lie group of unit quaternions IH1 and pure imaginary quater-
nions IHp.

In Siconos we choose to parametrize the rotation with a unit quaternion p ∈ IH such that R = Φ(p).
This parameterization has no singularity and has only one redundant variable that is determined by
imposing ‖p‖ = 1.

Quaternion definition. There is many ways to define quaternions. The most convenient one is to
define a quaternion as a 2 × 2 complex matrix, that is an element of C2×2. For this end, we write for
z ∈ C, z = a + ib with a, b ∈ IR2 and i2 = −1 and its conjugate z̄ = a− ib. Let e, , i, j, k the following
matrices in C2×2

e =
[

1 0
0 1

]
, i =

[
i 0
0 −i

]
j =

[
0 1
−1 0

]
k =

[
0 i
i 0

]
(11.123) {eq:127}

Definition 18 Let IH be the set of all matrices of the form

p0e + p1i + p2j + p3k (11.124) {eq:128}

where (p0, p1, p2, p3) ∈ IR4. Every Matrix in IH is of the form[
x y
−ȳ x̄

]
(11.125) {eq:129}

where x = p0 + ip1 and y = p2 + ip3. The matrices in IH are called quaternions.

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 65/98

Definition 19 The null quaternion generated by [0, 0, 0, 0] ∈ IR4 is denoted by 0 . Quaternions of the form
p1i + p2j + p3k are called pure quaternions. The set of pure quaternions is denoted by IHp.

With the definition of IH as a set of complex matrices, It can be show that IH is a real vector space of
dimension 4 with basis e, , i, j, k. Furthermore, with the matrix product, IH is a real algebra.

Representation of quaternions Thanks to the equations (11.124), (11.124) and (11.125), we see that
there are several manner to represent a quaternion p ∈ IH. It can be represented as a complex ma-
trix as in (11.125). It can also be represented as a vector in IR4 , p = [p0, p1, p2, p3] with the isomor-
phism (11.124). In other words, IH is isomorphic to IR4. The first element p0 can also be viewed as a
scalar and three last ones as a vector in IR3 denoted by #»p = [p1, p2, p3], and in that case, IH is viewed as
IR× IR3. The quaternion can be written as p = (p0, #»p).

Quaternion product The quaternion product denoted by p · q for p, q ∈ IH1 is naturally defined as the
product of complex matrices. With its representation in IR× IR3, the quaternion product is defined by

p · q =

[
poqo − #»p #»q

p0
#»q + qo

#»p + #»p × #»q

]
. (11.126) {eq:73}

Since the product is a matrix product, it is not communicative, but it is associative. The identity element
for the quaternion product is

e =
[

1 0
0 1

]
= (1,

#»

0). (11.127) {eq:57}

Let us note that
(0, #»p) · (0,

#»

(q)) = −(0, #»q) · (0, #»p). (11.128) {eq:74}

The quaternion multiplication can also be represented as a matrix operation in IR4×4. Indeed, we have

p · q =


q0 p0 − q1 p1 − q2 p2 − q3 p3
q0 p1 + q1 p0 − q2 p3 + q3 p2
q0 p2 + q1 p3 + q2 p0 − q3 p1
q0 p3 − q1 p2 + q2 p1 + q3 p0

 (11.129) {eq:75}

that can be represented as

p · q =


p0 −p1 −p2 −p3
p1 p0 −p3 p2
p2 p3 p0 −p1
p3 −p2 p1 p0




q0
q1
q2
q3

 := [p·]q (11.130) {eq:76}

or

p · q =


q0 −q1 −q2 −q3
q1 q0 q3 −q2
q2 −q3 q0 q1
q3 q2 −q1 q0




p0
p1
p2
p3

 := [·q]p (11.131) {eq:77}

Adjoint quaternion, inverse and norm The adjoint quaternion of p is denoted by

p? =
[

x y
−ȳ x̄

]T

=

[
x̄ −y
ȳ x

]
=
[
p0,−p1,−p2,−p3

]
= (p0,− #»p) (11.132)

We note that

p · p? =
[

x y
−ȳ x̄

] [
x̄ −y
ȳ x

]
= det(

[
x y
−ȳ x̄

]
)e = (xx̄ + yȳ)e = (p2

0 + p2
1 + p2

2 + p2
3)e (11.133) {eq:131}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 66/98

The norm of a quaternion is given by |p|2 = p>p = p2
o + p2

1 + p2
2 + p2

3. In particular, we have
p · p? = p? · p = |p|2e. This allows to define the reciprocal of a non zero quaternion by

p−1 =
1
|p|2 p? (11.134) {eq:78}

A quaternion p is said to be unit if |p| = 1.

Unit quaternion and rotation For two vectors x ∈ IR3 and x′ ∈ IR3, we define the quaternion px =
(0, x) ∈ IHp and px′ = (0, x′) ∈ IHp. For a given unit quaternion p, the transformation

px′ = p · px · p? (11.135) {eq:79}

defines a rotation R such that x′ = Rx given by

x′ = (p2
0 − p> #»p)x + 2p0(

#»p × x) + 2(#»p>x)p = Rx (11.136) {eq:80}

The rotation matrix may be computed as

R = Φ(p) =

 1− 2p2
2 − 2p2

3 2(p1 p2 − p3 p0) 2(p1 p3 + p2 p0)
2(p1 p2 + p3 p0) 1− 2p2

1 − 2p2
3 2(p2 p3 − p1 p0)

2(p1 p3 − p2 p0) 2(p2 p3 + p1 p0) 1− 2p2
1 − 2p2

2

 (11.137) {eq:81}

Computation of the time derivative of a unit quaternion associated with a rotation. The derivation
with respect to time can obtained as follows. The rotation transformation for a unit quaternion is given
by

px′(t) = p(t) · px · p?(t) = p(t) · px · p−1(t) (11.138) {eq:82}

and can be derived as

ṗx′(t) = ṗ(t) · px · p−1(t) + p(t) · px · ṗ−1(t)
= ṗ(t) · p−1(t) · px′(t) + px′(t) · p(t) · ṗ−1(t)

(11.139) {eq:83}

From p(t) · p−1(t) = e, we get
ṗ(t) · p−1(t) + p · ṗ−1(t) = 0 (11.140) {eq:84}

so (11.138) can be rewritten

ṗx′(t) = ṗ(t) · p−1(t) · px′(t)− px′(t) · ṗ(t) · p−1(t) (11.141) {eq:85}

The scalar part of ṗ(t) · p−1(t) is (ṗ(t) · p−1(t))0 = po ṗ0 +
#»p T #»ṗ . Since p is a unit quaternion, we have

|p| = 1 =⇒ d
dt
(p>p) = 0 = ṗ>p + p> ṗ = 2(po ṗ0 +

#»p T #»ṗ). (11.142) {eq:86}

Therefore, the scalar part (ṗ(t) · p−1(t))0 = 0. The quaternion product ṗ(t) · p−1(t) and px′(t) is a
product of quaternions with zero scalar part (see (11.128)), so we have

ṗx′(t) = 2 ṗ(t) · p−1(t) · px′(t). (11.143) {eq:87}

In terms of vector of IR3, this corresponds to

ẋ′(t) = 2
»

ṗ(t) · p−1(t)× x′(t). (11.144) {eq:88}

Since x′(t) = R(t)x, we have ẋ′ = Ṙ(t)x = ω̃(t)R(t)x = ω̃(t)x′(t). Comparing (11.143) and (11.144), we
get

ω̃(t) = 2
»

ṗ(t) · p−1(t) (11.145) {eq:89}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 67/98

or equivalently

ṗ(t) · p−1(t) = (0,
ω(t)

2
) (11.146) {eq:90}

Finally, we can conclude that

ṗ(t) = (0,
ω(t)

2
) · p(t). (11.147) {eq:91}

Sinceω(t) = R(t)Ω(t), we have

(0,ω(t)) = (0, R(t)Ω(t)) = p(t) · (0, Ω(t)) · p̄(t) = p(t) · (0, Ω(t)) · p−1(t) (11.148) {eq:92}

and then
ṗ(t) =

1
2

p(t) · (0, Ω(t)). (11.149) {eq:93}

The time derivation is compactly written

ṗ =
1
2

p · (0,
Ω

2
) = [p·]p Ω

2
= Ψ(p)

Ω

2
, (11.150) {eq:94}

and using the matrix representation of product of quaternion we get

Ψ(p) =


−p1 −p2 −p3
p0 −p3 p2
p3 p0 −p1
−p2 p1 p0

 (11.151) {eq:95}

The relation (11.149) can be also inverted by writing

(0, Ω(t)) = 2p−1(t) · ṗ(t) (11.152) {eq:96}

Using again matrix representation of product of quaternion, we get

Ω(t) = 2
»

p−1(t) · ṗ(t) = 2

−p1 p0 p3 −p2
−p2 −p3 p0 p1
−p3 p2 −p1 p0

 ṗ(t) = 2Ψ(p)> ṗ(t) (11.153) {eq:97}

Note that we have Ψ>(p)Ψ(p) = I4×4 and Ψ(p)Ψ>(p) = I3×3

Lie group structure of unit quaternions. In terms of complex matrices, an unit quaternion p satisfies

det
([

x y
−ȳ x̄

])
= 1 (11.154) {eq:125}

The set of all unit quaternions that we denote IH1 is the set of unitary matrices of determinant equal to
1. From (11.133), we get that

p · p? = e (11.155) {eq:126}

It implies that the set IH1 is the set of special unitary complex matrices. The set is a Lie group usually
denoted as SU(2). Since we used multiple representation of a quaternion, we continue to use IH1 ∼=
SU(2) as a notation but with the Lie group structure implied by SU(2).

Let us compute the tangent vector at a point p ∈ IH1. Let q(t) be a smooth curve q(·) : t ∈ IR 7→ q(t) ∈

H1 in H1 such that q(O) = p. Since q(t) ∈ H1, we have |q(t)| = 1 and then
d
dt
|q(t)| = 2(q0(0)q̇0(0) +

~qT(0)~̇q(0)) = 0. At t = 0, we get
2(p0a0 +~pT~a) = 0. (11.156) {eq:48}

This relation imposes that the quaternions 2p? · a ∈ H1 and 2a · p? ∈ H1, that is, have to be pure
quaternions. Therefore, it existsω ∈ IR3 and Ω ∈ IR3 such that

(0, Ω) = 2p? · a (11.157) {eq:132}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 68/98

and
(0,ω) = 2a · p? (11.158) {eq:132}

In other terms, the tangent vector spaces at p ∈ IH1 can be represented as a left representation

Tp IH1 = {a | a = p · (0,
Ω

2
), Ω ∈ IR3} (11.159) {eq:133}

or a right representation
Tp IH1 = {a | a = (0,

ω

2
) · p,ω ∈ IR3} (11.160) {eq:1330}

At p = e, we get the Lie algebra defined by

h1 = Te IH1 = {a = (0,
Ω

2
), Ω ∈ IR3} (11.161) {eq:134}

equipped with the Lie bracket given by the commutator

[p, q] = p · q− q · p. (11.162) {eq:135}

We can easily verify that for a = (0,
Ω

2
), b = (0,

Γ

2
) ∈ h1, we have

[a, b] = (0,
Ω

2
) · (0,

Γ

2
)− (0,

Γ

2
) · (0,

Ω

2
) = (0,

Ω× Γ

2
) ∈ h1 (11.163) {eq:136}

As for so(3), the Lie algebra h1 is isomorphic to IR3 thanks to the operator (̂·) : IR3 → h1 and defined by

(̂·) : Ω 7→ Ω̂ = (0,
Ω

2
) (11.164) {eq:54}

With this operator, the Lie Bracket can be written

[Ω̂, Γ̂] = Ω̂× Γ (11.165) {eq:137}

A special (right) action of Lie Group G on a manifoldM. Let us come back to the representation of
Tp IH1 given in (11.159). It is clear it can expressed with a representation that relies on h1

TRSO(3) = {a = p · Ω̂ | Ω̂ ∈ h1}. (11.166) {eq:158}

With (11.90), we see that there is a linear map that relates Tp IH1 to h1. This linear map defines a vector
field. A special group action is defined by the left translation map for a point p ∈ IH1

Lp : IH1 → IH1
q 7→ Lp(q) = p · q (11.167) {eq:159}

which is diffeomorphism on IH1. In that case, we identify the manifold and the group. So, Lp can be
viewed as a left or a right group action. We choose a right action. For our application where G =M =
IH1 and Λr(p, q) = Lp(q) = p · q, we get

λr
∗(a)(p) =

d
dt

Lp(q(t))
∣∣∣∣
t=0

=
d
dt

p · q(t)
∣∣∣∣
t=0

= p · q̇(0) = p · q̇(0) ∈ X(M) (11.168) {eq:160}

for a smooth curve q(t) in IH1. Since q(·) is a smooth curve in IH1, q̇(0) is a tangent vector at the point
q(0) = I, that is an element a = Ω̂ ∈ h1 defined by the relation (11.44). Therefore, the vector field in
(11.168) is a tangent vector field and we get

ṗ(t) = λr
∗(a)(p(t)) = p(t) · Ω̂ (11.169) {eq:161}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 69/98

Exponential map expq : h1 → IH1 We can directly apply Theorem 1 and we get that the solution of{
ṗ(t) = λr

∗(a)(p(t)) = p(t) · Ω̂
p(0) = Rp0

(11.170) {eq:130}

is
p(t) = p0 expq(tΩ̂) (11.171) {eq:138}

The exponential mapping expq : h1 → IH1 can also be defined as expq(Ω̂) = q(1) where q(t) satisfies
the differential equation

q̇(t) = q(t) · Ω̂, q(0) = e. (11.172) {eq:235}

Using the quaternion product, the exponential map can be expressed as

expq(tΩ̂) =
∞
∑
k=0

(tΩ̂)k

k!
(11.173) {eq:232}

since it is a solution of (11.170). A simple computation allows to check this claim:

d
dt

expq(tΩ̂) =
∞
∑
k=1

ktk−1 Ω̂
k

k!
=

∞
∑
k=0

tk tΩ̂k

k!
· Ω̂ = expq(tΩ̂) · Ω̂. (11.174) {eq:233}

A closed form relation for the form the quaternion exponential can also be found by noting that

Ω̂2 = −
(
θ

2

)2
e, and Ω̂3 = −

(
θ

2

)2
Ω̂. (11.175) {eq:140}

A simple expansion of (11.173) at t = 1 equals

expq(Ω̂) =
∞
∑
k=0

(Ω̂)k

k!

=
∞
∑
k=0

(−1)k

(2k)!

(
θ

2

)2k
e +

∞
∑
k=0

(−1)k

(2k + 1)!

(
θ

2

)2k+1
Ω̂

= cos(
θ

2
)e +

sin(θ2)
θ
2

Ω̂

(11.176) {eq:141}

that is
expq(Ω̂) = (cos(

θ

2
), sin(

θ

2
)
Ω

θ
). (11.177) {eq:144}

Adjoint representation In the case of IH1, the definition of the operator Ad gives

Adp(Ω̂) = p · Ω̂p? (11.178) {eq:121}

and then mapping ad
Ω̂
(Γ̂) is defined by

ad
Ω̂
(Γ̂) = Ω̂Γ̂ − Γ̂ Ω̂ = [Ω̂, Γ̂] = Ω̂× Γ . (11.179) {eq:56}

Using the isomorphism between h1 and IR3, we can use the the mapping adΩ(Γ) : IR3 × IR3 → IR3 given
by (11.107) to get

ad
Ω̂
(Γ̂) = Ω̂× Γ = âdΩ(Γ) =

̂̃ΩΓ (11.180) {eq:145}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 70/98

Differential of the exponential map dexpq The differential of the exponential mapping, denoted by
dexpq is defined as the ’right trivialized’ tangent of the exponential map

d
dt
(expq(Ω̂(t))) = dexpq

Ω̂(t)(
dΩ̂(t)

dt
) expq(Ω̂(t)) (11.181) {eq:71}

An explicit expression of dexp
Ω̂
(Γ̂) can also be developed either by developing the expansion and (11.165).

dexpq
Ω̂
(Γ) =

∞
∑
k=0

1
(k + 1)!

adk
Ω̂
(Γ̂) = T̂(Ω)Γ (11.182) {eq:168}

Remark 5 Note that the time derivative in IR4 is not differential mapping. The standard time derivative of expq
in the expression (11.177) gives

d
dt

expq(Γ̂ (t)) = (− sin(θ)
θ

ΩTΓ ,
sin(θ)
θ

Γ+
θ cos(θ)− sin(θ)

θ3 ΩTΩΓ) (11.183) {eq:171}

that can be expressed in IR4 by
d
dt

expq(Γ̂ (t)) = ∇ expq(Ω̂) ̂̇Ω (11.184) {eq:175}

with

∇ expq(Ω̂) =

 − sin(θ)
θ

ΩT

sin(θ)
θ

I +
θ cos(θ)− sin(θ)

θ3 ΩTΩ

 (11.185) {eq:176}

Clearly, we have
∇ expq(Ω̂) 6= dexpq

Ω̂
(11.186) {eq:177}

Directional derivative and Jacobians of functions of a quaternion

11.4.1 Redaction note V. ACARY
experimental

Let f : IH1 → IR be a mapping from the group to IR3. The directional derivative of f in the direction
Ω̂ ∈ h1 at p ∈ IH1 is defined by

dfp(Ω̂) =
d
dt

f (p · expq(tΩ̂))

∣∣∣∣
t=0

(11.187) {eq:139}

As a first simple example let us choose f (p) =
»

p · px · p? for a given x ∈ IR3, we get

DId · Ω̂(p) = (Ω̂r f)(p) =
d
dt

»

p · expq(tΩ̂) · px · (p · expq(tΩ̂))?
∣∣∣∣
t=0

=

»

p · d
dt

expq(tΩ̂)
∣∣∣
t=0
· px · p? + p · px · (p · d

dt
expq(tΩ̂)

∣∣∣
t=0

)?
(11.188) {eq:142}

We have form the definition of the time derivative of the exponential

d
dt

expq(tΩ̂)
∣∣∣
t=0

= dexpq
Ω̂
(Ω̂) expq(tΩ̂)

∣∣∣
t=0

= dexpq
Ω̂
(Ω̂)

(11.189) {eq:143}

Then, the directional derivative can be written

DId · Ω̂(p) =
»

p · dexpq
Ω̂
(Ω̂) · px · p? + p · px · (dexpq

Ω̂
(Ω̂))∗ · p?

=
»

p · (dexpq
Ω̂
(Ω̂) · px + px · (dexpq

Ω̂
(Ω̂))∗) · p?

(11.190) {eq:146}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 71/98

11.5 Newton-Euler equation in quaternion form

Computation of T for unit quaternion The operator T(q) is directly obtained as

T(q) =
1
2


2I3×3 03×3

−p1 −p2 −p3
04×3 p0 −p3 p2

p3 p0 −p1
−p2 p1 p0

 (11.191) {eq:98}

11.5.1 Redaction note V. ACARY
todo :

• computation of the directional derivative of R(Ω) = exp(Ω̃) in the direction Ω̃, to
get T(Ω)

Quaternion representation If the Lie group is described by unit quaternion, we get

SO(3) = {p = (p0, #»p) ∈ IR4 | |p| = 1} (11.192) {eq:99}

with the composition law p1 · p2 given by the quaternion product.
Note that the concept of exponential map for Lie group that are not parameterized by matrices is

also possible.

11.5.1 Mechanical systems with bilateral and unilateral constraints
{section22}

Let us consider that the system (11.20) is subjected to m constraints, with me holonomic bilateral con-
straints

hα(q) = 0,α ∈ E ⊂ IN, |E | = me, (11.193) {eq:bilateral-constraints}

and mi unilateral constraints
gαN (q) ≥ 0,α ∈ I ⊂ IN, |I| = mi . (11.194) {eq:unilateral-constraints}

Let us denote as Jαh (q) = ∇
>
q hα(q) the Jacobian matrix of the bilateral constraint hα(q) with respect to q

and as JαgN
(q) respectively for gαN (q) . The bilateral constraints at the velocity level can be obtained as:

0 = ḣα(q) = Jαh (q)q̇ = Jαh (q)T(q)v := Hα(q)v, α ∈ E . (11.195) {eq:bilateral-constraints-velocity}

By duality and introducing a Lagrange multiplier λα ,α ∈ E , the constraint generates a force applied
to the body equal to Hα,>(q)λα . For the unilateral constraints, a Lagrange multiplier λαN ,α ∈ I is also
associated and the constraints at the velocity level can also be derived as

0 ≤ ġαN (q) = JαgN
(q)q̇ = JαgN

(q)T(q)v, if gαN (q) = 0, α ∈ I . (11.196) {eq:unilateral-constraints-velocity}

Again, the force applied to the body is given by (JαgN
(q)T(q))>λαN . Nevertheless, there is no reason that

λαN = rαN and uN = JαgN
(q)T(q)v if the gn is not chosen as the signed distance (the gap function). This is the

reason why we prefer directly define the normal and the tangential local relative velocity with respect
to the twist vector as

uαN := GαN (q)v, uαT := GαT (q)v, α ∈ I , (11.197) {eq:unilateral-constraints-velocity-kinematic1}

and the associated force as Gα,>
N (q)rαN and Gα,>

T (q)rαT . For the sake of simplicity, we use the notation uα :=
Gα(q)v and its associated total force generated by the contactα as Gα,>(q)rα := Gα,>

N (q)rαN + Gα,>
T (q)rαT .

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 72/98

The complete system of equation of motion can finally be written as

q̇ = T(q)v,

Mv̇ = F(t, q, v) + H>(q)λ+ G>(q)r,

Hα(q)v = 0, α ∈ E
rα = 0, if gαN (q) > 0,

Kα,∗ 3 ûα⊥ rα ∈ Kα , if gαN (q) = 0,

uα,+
N = −eαr uα,−

N , if gαN (q) = 0 and uα,−
N ≤ 0,

 α ∈ I
(11.198) {eq:NewtonEuler-uni}

where the definition of the variables λ ∈ IRme , r ∈ IR3mi and the operators H, G are extended to collect
all the variables for each constraints.

Note that all the constraints are written at the velocity integrators. Another strong advantage is the
straightforward introduction of the contact dissipation processes that are naturally written at the veloc-
ity level such as the Newton impact law and the Coulomb friction. Indeed, in Mechanics, dissipation
processes are always given in terms of rates of changes, or if we prefer, in terms of velocities.

Siconos Notation In the siconos notation, we have for the applied torques on the system the following
decomposition

F(t, q, v) :=
(

f (t, xg, vg, R, Ω)
IΩ×Ω+ M(t, xg, vg, R, Ω)

)
:=
(

fext(t)− fint(xg, vg, R, Ω)
−Mgyr(Ω) + Mext(t)−Mint(xg, vg, R, Ω)

)
.

(11.199)
with

Mgyr :=
(
Ω× IΩ

)
(11.200)

In the siconos notation, we have for the relation

C = Jα(q) CT = Jα(q)T(q) (11.201) {eq:100}

11.6 Time integration scheme in scheme

11.6.1 Moreau–Jean scheme based on a θ-method

The complete Moreau–Jean scheme based on a θ-method is written as follows

qk+1 = qk + hT(qk+θ)vk+θ

M(vk+1 − vk)− hF(tk+θ , qk+θ , vk+θ) = H>(qk+1)Qk+1 + G>(qk+1)Pk+1,

Hα(qk+1)vk+1 = 0
}

α ∈ E

Pαk+1 = 0,
}

α 6∈ Iν

Kα,∗ 3 ûαk+1 ⊥ Pαk+1 ∈ Kα
}

α ∈ Iν

(11.202) {eq:Moreau–Jean-theta}

where Iν is the set of forecast constraints, that may be evaluated as

Iν = {α | ḡαN := gN +
h
2

uαN ≤ 0}. (11.203) {eq:101}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 73/98

11.6.2 Semi-explicit version Moreau–Jean scheme based on a θ-method

qk+1 = qk + hT(qk)vk+θ

M(vk+1 − vk)− hF(tk, qk, vk) = H>(qk)Qk+1 + G>(qk)Pk+1,

Hα(qk+1)vk+1 = 0
}

α ∈ E

Pαk+1 = 0,
}

α 6∈ Iν

Kα,∗ 3 ûαk+1 ⊥ Pαk+1 ∈ Kα
}

α ∈ Iν

(11.204) {eq:Moreau–Jean-explicit}

In this version, the new velocity vk+1 can be computed explicitly, assuming that the inverse of M is
easily written, as

vk+1 = vk + M−1hF(tk , qk, vk) + M−1(H>(qk)Qk+1 + G>(qk)Pk+1) (11.205) {eq:Moreau–Jean-theta–explicit-v}

11.6.3 Nearly implicit version Moreau–Jean scheme based on a θ-method imple-
mented in siconos

A first simplification is made considering a given value of qk+1 in T(), H() and G() denoted by q̄k. This
limits the computation of the Jacobians of this operators with respect to q.

qk+1 = qk + hT(q̄k)vk+θ

M(vk+1 − vk)− hθF(tk+1, qk+1, vk+1)− h(1−θ)F(tk, qk, vk) = H>(q̄k)Qk+1 + G>(q̄k)Pk+1,

Hα(q̄k)vk+1 = 0
}

α ∈ E

Pαk+1 = 0,
}

α 6∈ Iν

Kα,∗ 3 ûαk+1 ⊥ Pαk+1 ∈ Kα
}

α ∈ Iν

(11.206) {eq:Moreau–Jean-theta-nearly}
The nonlinear residu is defined as

R(v) = M(v− vk)− hθF(tk+1, q(v), v)− h(1−θ)F(tk, qk, vk)− H>(q̄k)Qk+1 − G>(q̄k)Pk+1 (11.207) {eq:Moreau–Jean-theta–nearly-residu}

with
q(v) = qk + hT(q̄k))((1−θ)vk +θv). (11.208) {eq:Moreau–Jean-theta–nearly-residu1}

At each time step, we have to solve
R(vk+1) = 0 (11.209) {eq:Moreau–Jean-theta–nearly-residu2}

together with the constraints.
Let us write a linearization of the problem to design a Newton procedure:

∇>v R(vτk+1)(v
τ+1
k+1 − vτk+1) = −R(v

τ
k+1). (11.210) {eq:Moreau–Jean-theta–nearly-residu3}

The computation of ∇>v R(vτk+1) is as follows

∇>v R(v) = M− hθ∇vF(tk+1, q(v), v) (11.211) {eq:102}

with
∇vF(tk+1, q(v), v) = D2F(tk+1, q(v), v)∇vq(v) + D3F(tk+1, q(v), v)

= hθD2F(tk+1, q(v), v)T(q̄k) + D3F(tk+1, q(v), v) (11.212) {eq:103}

where Di denotes the derivation with respect the ith variable. The complete Jacobian is then given by

∇>v R(v) = M− hθD3F(tk+1, q(v), v)− h2θ2D2F(tk+1, q(v), v)T(q̄k) (11.213) {eq:104}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 74/98

In siconos, we ask the user to provide the functions D3F(tk+1, q, v) and D2F(tk+1, q, v).
Let us denote by Wτ the inverse of Jacobian of the residu,

Wτ = (M− hθD3F(tk+1, q(v), v)− h2θ2D2F(tk+1, q(v), v)T(q̄k))
−1. (11.214) {eq:105}

and byR f ree(v) the free residu,

R f ree(v) = M(v− vk)− hθF(tk+1, q(v), v)− h(1−θ)F(tk, qk, vk). (11.215) {eq:106}

The linear equation 11.210 that we have to solve is equivalent to

vτ+1
k+1 = vτk+1 −WR f ree(vτk+1) + WH>(q̄k)Qτ+1

k+1 + WG>(q̄k)Pτ+1
k+1 (11.216) {eq:107}

We define v f ree as
v f ree = vτk+1 −WR f ree(vτk+1) (11.217) {eq:108}

The local velocity at contact can be written

uτ+1
N,k+1 = G(q̄k)[vτf ree + WH>(q̄k)Qτ+1

k+1 + WG>(q̄k)Pτ+1
k+1] (11.218) {eq:109}

and for the equality constraints

uτ+1
k+1 = H(q̄k)[vτf ree + WH>(q̄k)Qτ+1

k+1 + WG>(q̄k)Pτ+1
k+1] (11.219) {eq:110}

Finally, we get a linear relation between uτ+1
N,k+1 and the multiplier

uτ+1
k+1 =

[
H(q̄k)
G(q̄k)

]
vτf ree +

[
H(q̄k)WH>(q̄k) H(q̄k)WG>(q̄k)

G(q̄k)WH>(q̄k) G(q̄k)WG>(q̄k)

] [
Qτ+1

k+1
Pτ+1

k+1

]
(11.220) {eq:111}

choices for q̄k Two choices are possible for q̄k

1. q̄k = qk

2. q̄k = qτk+1

11.6.1 Redaction note V. ACARY
todo list:

• add the projection step for the unit quaternion

• describe the computation of H and G that can be hybrid

11.6.4 Computation of the Jacobian in special case

Moment of gyroscopic forces Let us denote by the basis vector ei given the ith column of the identity
matrix I3×3. The Jacobian of Mgyr is given by

∇>ΩMgyr(Ω) = ∇>Ω(Ω× IΩ) =
[
ei × IΩ+Ω× Iei , i = 1, 2, 3

]
(11.221) {eq:112}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 75/98

Linear internal wrench If the internal wrench is given by

Fint(t, q, v) =
[

fint(t, q, v)
Mint(t, q, v)

]
= Cv + Kq, C ∈ IR6×6, K ∈ IR6×7 (11.222) {eq:113}

we get
∇vF(tk+1, q(v), v) = hθKT(q̄k) + C
∇>v R(v) = M− hθC− h2θ2KT(q̄k)

(11.223) {eq:114}

External moment given in the inertial frame If the external moment denoted by mext(t) is expressed
in inertial frame, we have

Mext(q, t) = RTmext(t) = Φ(p)mext(t) (11.224) {eq:115}

In that case, Mext(q, t) appears as a function q and we need to compute its Jacobian w.r.t q. This compu-
tation needs the computation of

∇p Mext(q, t) = ∇pΦ(p)mext(t) (11.225) {eq:116}

Let us compute first

Φ(p)mext(t) =

(1− 2p2
2 − 2p2

3)mext,1 + 2(p1 p2 − p3 p0)mext,2 + 2(p1 p3 + p2 p0)mext,3
2(p1 p2 + p3 p0)mext,1 + (1− 2p2

1 − 2p2
3)mext,2 + 2(p2 p3 − p1 p0)mext,3

2(p1 p3 − p2 p0)mext,1 + 2(p2 p3 + p1 p0)mext,2 + (1− 2p2
1 − 2p2

2)mext,3

 (11.226) {eq:117}

Then we get

∇pΦ(p)mext(t) =[
−2p3mext,2 + 2p2mext,3 2p2mext,2 + 2p3mext,3 −4p2mext,1 + 2p1mext,2 + 2p0mext,3 −3p3mext,1 − 2p0mext,2 + 2p1mext,3
2p3mext,1 − 2p1mext,3 2p2mext,1 − 4p1mext,2 − 2p1mext,3

]
(11.227) {eq:118}

11.6.5 Siconos implementation

The expression: R f ree(vτk+1) = M(v− vk)− hθF(tk+1, q(vτk+1), vτk+1)− h(1−θ)F(tk, qk, vk) is computed
in MoreauJeanOSI::computeResidu() and saved in ds->workspace(DynamicalSystem::freeresidu)

The expression: R(vτk+1) = R f ree(vτk+1)− h(1−θ)F(tk, qk, vk)− H>(q̄k)Qk+1 − G>(q̄k)Pk+1 is com-
puted in MoreauJeanOSI::computeResidu() and saved in ds->workspace(DynamicalSystem::free).

11.6.2 Redaction note V. ACARY
really a bad name for the buffer ds->workspace(DynamicalSystem::free). Why we are chosing
this name ? to save some memory ?

The expression: v f ree = vτk+1 −WR f ree(vτk+1) is compute in MoreauJeanOSI::computeFreeState()
and saved in d->workspace(DynamicalSystem::free).

The computation: vτ+1
k+1 = v f ree +WH>(q̄k)Qτ+1

k+1 +WG>(q̄k)Pτ+1
k+1 is done in MoreauJeanOSI::updateState

and stored in d->twist().

file DevNotes.tex – 2018-03-14 11:18

Chapter 12

NewtonEulerR: computation of ∇qH

12.0.1 Gradient computation, case of NewtonEuler with quaternion

In the section, q is the quaternion of the dynamical system.

N

G

Pc

Figure 12.1: Impact of one DS. {figCase}

The normal vector N is view as a constant.

h̃(q) = Pc(
q
‖q‖)

t∇h(q)(δq) = lim
e→0

(h̃(q + eδq)− h̃(q)).N
e

∇qh consist in computing Pc(
q + δq
‖q + δq‖)− Pc(q).

GP(q) = qG0P0
cq

GP(
q + δq
‖q + δq‖) = (q + δq)G0P0

c(q + δq)
1

‖q + δq‖2

= (q + δq) cqGP(q)q c(q + δq)
1

‖q + δq‖2

76

Siconos Development team – Notes 77/98

= ((1, 0, 0, 0) + δq cq)GP(q)((1, 0, 0, 0) + q cδq)
1

‖q + δq‖2

= GP(q) + δq cqGP(q) + GP(q)q cδq + 0(δq)2 1
‖q + δq‖2

So, because G is independant of q:

P(
q + δq
‖q + δq‖)− P(q) = qGP(

q + δq
‖q + δq‖)−GP(q) = δq cqGP(q) + GP(q)q cδq + 0(δq)2 + GP(q)

1
‖q + δq‖2

For the directional derivation, we chose δq = ε ∗ (1, 0, 0, 0). using a equivalent to
1

1 +ε

lim
ε→0

P(q+δq
‖q+δq‖)− P(q)

ε
= cqGP(q) + GP(q)q− 2qiGP(q)

For the directional derivation, we chose δq = ε ∗ (0, 1, 0, 0) = ε ∗ ei

lim
ε→0

P(q+δq
‖q+δq‖)− P(q)

ε
= ei

cqGP(q)− GP(q)qei − 2qiGP(q)

Application to the NewtonEulerRImpact:

H : R7 → R

∇qH ∈ M1,7

∇qH =



Nx
Ny
Nz

(cqGP(q) + GP(q)q− 2q0GP(q)).N
(e2

cqGP(q)− GP(q)qe2 − 2q1GP(q)).N
(e3

cqGP(q)− GP(q)qe3 − 2q2GP(q)).N
(e4

cqGP(q)− GP(q)qe4 − 2q3GP(q)).N


12.0.2 Ball case

It is the case where GP = −N: for e2:

(0, 1, 0, 0).(q0,−p).(0,−N) = 1
0
0

 .p,

 q0
0
0

−
 1

0
0

 ∗ p

 .(0,−N) =

?,−p
x

N −

 q0
0
0

−
 1

0
0

 ∗ p

 ∗ N

 =

and:
(0,−N).(q0, p).(0, 1, 0, 0) =

(N.p,−q0N − N ∗ p).(0, 1, 0, 0) =?, (N.p)

 1
0
0

+

 1
0
0

 ∗ (q0N + N ∗ p)

 =

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 78/98

?, (N.p)

 1
0
0

+ q0

 1
0
0

 ∗ N +

 1
0
0

 ∗ (N ∗ p)


sub then and get the resulting vector.N:−p

x
N − N.p

 1
0
0

+ () ∗ N −

 1
0
0

 ∗ (N ∗ p)

 .N =

−p
x
− NxN.p + 0− (

 1
0
0

 ∗ (N ∗ p)).N =

using a ∗ (b ∗ c) = b(a.c)− c(a.b) leads to

−q1 − NxN.p− (q1 N − Nx p).N =

−q1 − NxN.p− q1 + NxN.p = −2q1

for e1 = (1, 0, 0, 0):
(q0,−p).(0,−N) = (?,−q0N + p ∗ N)

(0,−N).(q0, p) = (?,−q0N − p ∗ N)

So

∇qH =



Nx
Ny
Nz
0
0
0
0


12.0.3 Case FC3D: using the local frame and momentum(

mV̇
IΩ̇+ΩIΩ

)
=

(
Fect + R

MextRob j + (R ∗ PG)Rob j

)
with * vectoriel product, R reaction in the globla frame. P the point of contact. r is the reaction in the
local frame. MRob jtoRabs = Mt

RabstoRob j
r = R with:

MRCtoRabs =

 nx t1x t2x
ny t1 y t2 y
nz t1z t2z


we have : (

R
(R ∗ PG)Rob j

)
=

(
I3

MRabstoRob j NPG

)
.R

=

(
I3

MRabstoRob j NPG

)
.MRob jtoRabs r

NPG =

 0 PGz −PGy
−PGz 0 PGx
PGy −PGX 0


that is: (

mV̇
IΩ̇+ΩIΩ

)
=

(
MRCtoRabs

MRabstoRob j NPG MRCtoRabs

)
r

So jachqt = MN

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 79/98

12.0.4 Case FC3D: using the local frame local velocities

C
RC

Rabs

Rob j1

Rob j2

G1

G2

Figure 12.2: Two objects colliding. {figCase}

We are looking for an operator named CT such that:

VC =

 VN
VT
VS


RC

= CT


VG1 Rabs
Ω1 Rob j1

VG2 Rabs
Ω2 Rob j2


Vc = VG1 Rabs + w1 ∗ G1P Rabs − (VG2 Rabs + w2 ∗ G1P Rabs)

where w1 and w2 are given in Rabs. We note MRob j1toRabs the matrice converting the object 1 coordinate
to the absolute coordinate. We note NGP the matrice such that w1 ∗ G1P Rabs = NGCw1. Endly, we note
MRabstoRC converting the absolute coordinate to the RC frame. we get:

CT = MRabstoRC

(
I3 NG1C MRob j1toRabs −I3 −NG2C MRob j2toRabs

)
12.0.4.a Expression of MRob j1toRabs

Using quaternion, we get :

MRob j1toRabs =

 q

 1
0
0

 cq q

 0
1
0

 cq q

 0
0
1

 cq

 (12.1) {eq:newton_Mobjtoabs}

12.0.4.b Expression of N1

NGC =

 0 G1Cz −G1Cy
−G1Cz 0 G1Cx
G1Cy −G1CX 0



file DevNotes.tex – 2018-03-14 11:18

Chapter 13

Projection On constraints

13.0.1 Velocity formulation

The first step consists in doing a velocity formulation of the system:

Mv̇ = Fext + Bλ
q̇ = Tv
y = h(q)
NSLAW(y, λ, ...)

(13.1) {NE_Dyn1}

The constraint q̇ = Tv is suffisiant to keep a normal quaternion. Because of the speed formulation,
h(q) could violate the NSLAW. A solution coul be to add a formulation in position. We must underline
that the constraints | Q |= 1 is implicit in this system. Endeed, the direction q̇ = Tv is tangential to the
sphere.

13.0.2 Posion formulation

It consists in writting a position formulation on the system:

h(q) =
(

HI(q)
HE(q)

)
(13.2) {NE_Dyn1}

13.0.2.a Approach using q

We are looking for q1 from q0:

q1 = q0 +∇HIΛI +∇HEΛE (13.3)

Assume that h(q0) doesn’t satisfy the constraints, ie HI(q0) � 0 or HE(q0) 6= 0). Linearize h leads to:

0 ≤ HI(q0) +∇tHI(∇HIΛI +∇HEΛE)⊥ΛI ≥ 0 (13.4)

0 = HE(q0) +∇tHE(∇HIΛI +∇HEΛE) (13.5)

The getting system could be written has a MLCP:

C 3 h(q0) +∇th(∇hΛ), Λ ∈ C∗ (13.6)

In the case of a quaternion Q for the rotation representation, it is noteworthy that this system doesn’t
deal with the constraints | Q |= 1. Thus, the direction (q1, q0) can be normal to this constraint, in that
case this approach doesn’t work. (It happens in practice) The solution that consists in normaliaed q after
this formulation is not convenient because, it could be incompatible with | Q |= 1. A better approach is
to add this constraint.

80

Siconos Development team – Notes 81/98

The constraint | Q |= 1 in the system HE:

H̃E(q) =
(

HE(q)
| Q | −1

)
(13.7)

The formulation described above can be done.

13.0.2.b Approach using V

It consists in building the OSNSP using CT instead of C.

h(q1) = h(q0) +∇tHδq (13.8) {NE_projV}

ie:
h(q1) = h(q0) +∇tHTV (13.9) {NE_projV}

We are looking for q1 such that:
q1 − q0 = ∇HΛ (13.10)

We have
δq = TV, tTδq =t TTV, (tTT)−1 tTδq = V

ie
h(q1) = h(q0) +

t ∇qhT(tTT)−1 tT∇qhΛ (13.11)

With C =t ∇qh leading to the prolem:

K 3 h(q0) + CT (tTT)−1 t(CT)Λ ∈ K∗ (13.12)

file DevNotes.tex – 2018-03-14 11:18

Chapter 14

Simulation of a Cam Follower System

Main Contributors: Mario di Bernardo, Gustavo Osorio, Stefania Santini
University of Naples Federico II, Italy.

The free body dynamics can be described by a linear second order system. An external input is
considered acting directly on the follower. This input is a non linear forcing component coming from the
valve. The follower motion is constrained to a phase space region bounded by the cam position. The non
conservative Newton restitution law is used for the computation of the post impact velocity. The cam is
assumed to be massive therefore only rotational displacement is allowed. Under these assumptions, the
free body dynamics of the follower can be described by

µ
d2u(t)

dt2 +ζ
du(t)

dt
+κu(t) = fv(t), if u(t) > c(t). (14.1) {eq:sols}

where µ, ζ and κ are constant parameters for the follower mass, friction viscous damping and spring

stiffness respectively. The state of the follower is given by the position u(t) and velocity v(t) =
du
dt

. The

external forcing is given by fv(t). The cam angular position determines c(t) that defines the holonomic
(i.e. constraint only on the position) rheonomic (i.e. time varying) constraint. The dynamic behavior
when impacts occurs (i.e. u(t) = c(t)) is modelled via Newton’s impact law that in this case is given by

v(t+) =
dc
dt
− r

(
v(t−)− dc

dt

)
= (1 + r)

dc
dt
− rv(t−), if u(t) = c(t). (14.2) {eq:il}

where v(t+) and v(t−) are the post and pre impact velocities respectively,
dc
dt

is the velocity vector of

the cam at the contact point with the follower, and r ∈ [0, 1] is the restitution coefficient to model from
plastic to elastic impacts. In Figure 14.1 is presented the schematic diagram of the physical cam-follower
system. In Figure 14.1.a for t = 0, 14.1.b for t = β, and 14.1.c the profile of the constraint position δc(t),

velocity
dc
dt
(t) and acceleration

d2c
dt2 (t). It is possible to visualize the follower displacement as a function

of the cam position. It is also important to notice that different types of cams and followers profiles are
used in practical applications.

14.0.1 The cam-follower as a Lagrangian NSDS.

It is possible to completely describe the cam-follower system as a driven impact oscillator into the frame-
work of Lagrangian NSDS using a translation in space. Setting û(t) = u(t)− c(t) and v̂(t) = v(t)− dc/dt,
then equations (14.1) and (14.2) can be expressed as (the argument t will not be explicitly written)

µ
d2û
dt2 +ζ

dû
dt

+κû = fv −
(
µ

d2c
dt2 +ζ

dc
dt

+κc
)
≡ f̂ , if û > 0. (14.3) {eq:trans}

v̂+ = −rv̂−, if û = 0. (14.4)

82

Siconos Development team – Notes 83/98

Fv

Cam

Followerµ

κ ζ

δc(β)

β

t = 0 t = β

(a) (b)

δc

dc
dt

d2c
dt2

π 2πβ

(c)

Figure 14.1: Cam-Shaft’s schematics. (a) t=0. (b) t=β. (c) Constraint position δc(t), velocity
dc
dt
(t) and

acceleration
d2c
dt

(t2).
{Fig:cam-shaft}

Using the framework presented in [2] we have that the equation of motion of a Lagrangian system may
be stated as follows :

M(q)q̈ + Q(q, q̇) + F(q̇, q, t) = Fext(t) + R (14.5) {eq:lag1}

From the (14.3) we can derive all of the terms which define a Lagrangian NSDS. In our case the model
is completely linear:

q =
[

û
]

M(q) =
[
µ
]

Q(q, q̇) =
[

0
]

(14.6) {eq:lag2}

F(q, q̇) =
[
ζ
]

q̇ +
[
κ
]

q

Fext =
[

f̂
]

The unilateral constraint requires that:

û ≥ 0

so we can obtain

y = HTq + b (14.7) {eq:constr}

HT =
[

1
]

b = 0

In the same way, the reaction force due to the constraint is written as follows:

R = Hλ, with H =
[

1
]

The unilataral contact law may be formulated as follow:

0 ≤ y ⊥ λ ≥ 0 (14.8) {eq:119}

and the Newton’s impact law:

If y = 0, ẏ+ = −rẏ− (14.9) {eq:120}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 84/98

14.0.2 Implementation in the platform

For the simulation of the cam follower system follow the steps

1. Move to the working directory sample/CamFollower

$cd sample/CamFollower

2. Clean the directory form binary files using the siconos command

$siconos -c

3. Compile the file CamFollowerNoXml.cpp in the sample folder (See the code at the end of the section)

$siconos CamFollowerNoXml.cpp

4. Change the simulation parameters (i.e. Follower initial position and velocity, cam initial angle,
simulations time, cam rotational speed in rpm, etc.) in the file CamFollowerNoXml.cpp.

Next we present the sample code for the CamFollowerNoXml.cpp file:

int main(int argc, char* argv[]) {
{

// ======== Creation of the model =============
// User-defined main parameters
double rpm=358;
double phi_0=0;
unsigned int dsNumber = 1; // the Follower and the ground
unsigned int nDof = 1; // degrees of freedom for the Follower
double t0 = 0; // initial computation time
double T = 5; // final computation time
double h = 0.0001; // time step
int Kplot;
Kplot=(int)(Tplot/h);
double position_init = 0.4; // initial position for lowest bead.
double velocity_init = 0.4; // initial velocity for lowest bead.

// ======= Dynamical systems =========

vector<DynamicalSystem *> vectorDS; // the list of DS
vectorDS.resize(dsNumber,NULL);

SiconosMatrix *Mass, *K, *C; // mass/rigidity/viscosity
Mass = new SiconosMatrix(nDof,nDof);
(*Mass)(0,0) = 1.221;
K = new SiconosMatrix(nDof,nDof);
(*K)(0,0) = 1430.8;
C = new SiconosMatrix(nDof,nDof);
(*C)(0,0) = 0;

// Initial positions and velocities
vector<SimpleVector *> position_0;
vector<SimpleVector *> velocity_0;
position_0.resize(dsNumber,NULL);
velocity_0.resize(dsNumber,NULL);
position_0[0] = new SimpleVector(nDof);
velocity_0[0] = new SimpleVector(nDof);
(*(position_0[0]))(0) = position_init;

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 85/98

(*(velocity_0[0]))(0) = velocity_init;

vectorDS[0] =
new LagrangianLinearTIDS(0,nDof,*(position_0[0]),*(velocity_0[0]),*Mass,*K,*C);

static_cast<LagrangianDS*>(vectorDS[0])
->setComputeFExtFunction("FollowerPlugin.so", "FollowerFExt");

// Example to set a list of parameters in FExt function.
// 1 - Create a simple vector that contains the required parameters.

// Here we set two parameters, the DS number.
SimpleVector * param = new SimpleVector(2);

(*param)(0)=rpm;
(*param)(1)=phi_0;
// 2 - Assign this param to the function FExt
static_cast<LagrangianDS*>(vectorDS[0])->setParametersListPtr(param,2);
// 2 corresponds to the position of FExt in the stl vector of possible parameters.
// 0 is mass, 1 FInt.
// Now the cam rotational velocity in rpms will be available in FExt plugin.

// ===== Interactions =====

vector<Interaction*> interactionVector;
interactionVector.resize(1,NULL);
vector<DynamicalSystem*> *dsConcerned =

new vector<DynamicalSystem*>(dsNumber);

// ===== Non Smooth Law =====
double e = 0.8;
// Interaction Follower-floor
SiconosMatrix *H = new SiconosMatrix(1,nDof);
(*H)(0,0) = 1.0;
NonSmoothLaw * nslaw = new NewtonImpactLawNSL(e);
Relation * relation = new LagrangianLinearR(*H);
(*dsConcerned)[0] = vectorDS[0];
interactionVector[0] = new Interaction("Follower-Ground",0,1, dsConcerned);
interactionVector[0]->setRelationPtr(relation);
interactionVector[0]->setNonSmoothLawPtr(nslaw);
// ===== Interactions =====

// ===== NonSmoothDynamicalSystem =====
bool isBVP =0;
NonSmoothDynamicalSystem * nsds =

new NonSmoothDynamicalSystem(isBVP);

// Set DS of this NonSmoothDynamicalSystem
nsds->setDynamicalSystems(vectorDS);
// Set interactions of the NonSmoothDynamicalSystem
nsds->setInteractions(interactionVector);

// ===== Model =====

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 86/98

Model * Follower = new Model(t0,T);
// set NonSmoothDynamicalSystem of this model
Follower->setNonSmoothDynamicalSystemPtr(nsds);

// ====== Strategy ======

double theta = 0.5; // theta for Moreau integrator
string solverName = "QP" ;

Strategy* S = new TimeStepping(Follower);

// – Time discretisation –
TimeDiscretisation * t = new TimeDiscretisation(h,S);

// – OneStepIntegrators –
vector<OneStepIntegrator *> vOSI;
vOSI.resize(dsNumber,NULL);
vOSI[0] = new Moreau(t,vectorDS[0],theta);
S->setOneStepIntegrators(vOSI);

// – OneStepNsProblem –
OneStepNSProblem * osnspb = new LCP(S,solverName,101, 0.0001,"max",0.6);
S->setOneStepNSProblemPtr(osnspb); // set OneStepNSProblem of the strategy
cout « "=== End of model loading === " « endl;
// ==== End of model definition======

// ========= Computation============

// — Strategy initialization —
S->initialize();
cout «"End of strategy initialisation" « endl;

int k = t->getK(); // Current step
int N = t->getNSteps(); // Number of time steps

// — Get the values to be plotted —
// -> saved in a matrix dataPlot
unsigned int outputSize = 8;

SiconosMatrix DataPlot(Kplot+1,outputSize);
// For the initial time step:

// time
DataPlot(k,0) = k*t->getH();

DataPlot(k,1) = static_cast<LagrangianDS*>(vectorDS[0])->getQ()(0);
DataPlot(k,2) = static_cast<LagrangianDS*>(vectorDS[0])->getVelocity()(0);
DataPlot(k,3) = (Follower->getNonSmoothDynamicalSystemPtr()->

getInteractionPtr(0)->getLambda(1))(0);
DataPlot(k,4) = static_cast<LagrangianDS*>(vectorDS[0])->getFExt()(0);

// State of the Cam

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 87/98

double CamEqForce,CamPosition,CamVelocity,CamAcceleration;
CamEqForce=

CamState(k*t->getH(),rpm,CamPosition,CamVelocity,CamAcceleration);
// Position of the Cam
DataPlot(k, 5) = CamPosition;
// Velocity of the Cam
DataPlot(k, 6) = CamVelocity;
// Acceleration of the Cam
DataPlot(k, 7) =

CamPosition+static_cast<LagrangianDS*>(vectorDS[0])->getQ()(0);

// — Time loop —
cout « "Start computation ... " « endl;
while(k < N)
{

// — Get values to be plotted —
DataPlot(k,0) = k*t->getH();

DataPlot(k,1) =
static_cast<LagrangianDS*>(vectorDS[0])->getQ()(0);

DataPlot(k,2) =
static_cast<LagrangianDS*>(vectorDS[0])->getVelocity()(0);

DataPlot(k,3) =
(Follower->getNonSmoothDynamicalSystemPtr()->
getInteractionPtr(0)->getLambda(1))(0);

DataPlot(k,4) = static_cast<LagrangianDS*>(vectorDS[0])->getFExt()(0);

CamEqForce=
CamState(k*t->getH(),rpm,CamPosition,CamVelocity,CamAcceleration);

DataPlot(k, 5) = CamPosition;
DataPlot(k, 6) = CamVelocity;
DataPlot(k, 7) = CamPosition+

static_cast<LagrangianDS*>(vectorDS[0])->getQ()(0);
// transfer of state i+1 into state i and time incrementation
S->nextStep();
// get current time step
k = t->getK();
// solve ...
S->computeFreeState();
S->computeOneStepNSProblem();
// update
S->update();

}
// — Output files —
DataPlot.rawWrite("result.dat", "ascii");
// — Free memory —
delete osnspb;
delete vOSI[0];
delete t;
delete S;
delete Follower;
delete nsds;

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 88/98

delete interactionVector[0];
delete relation;
delete nslaw;
delete H;
delete dsConcerned;
delete vectorDS[0];
delete position_0[0];
delete velocity_0[0];
delete C;
delete K;
delete Mass;

}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 89/98

14.0.3 Simulation

We have perform the simulation of the cam follower system for different values of the cam rotational
speed with the SICONOS software package using a time-stepping numerical scheme with step size (h =

1e−4) and an event-driven scheme with minimum step size
(hmin = 1e−12). Fig. 14.2 and 14.3 show the time simulations for different values of the cam rota-
tional speed and Fig. 14.4 show the chaotic attractor at rpm = 660 for impact and stroboscopic Poincarè
sections.

./comparison_figs/time_comparison_358-eps-converted-to.pdf

(a)

./comparison_figs/time_comparison_660-eps-converted-to.pdf

(b)

./comparison_figs/time_comparison_700-eps-converted-to.pdf

(c)

Figure 14.2: Time series using SICONOS platform. Time-stepping scheme (continuous line). Event-
driven scheme (dashed line) (a) rpm=358. (b) rpm=660. (c) rpm=700. {Fig:time_comparison}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 90/98

./comparison_figs/state_comparison_358event-eps-converted-to.pdf

(a)

./comparison_figs/state_comparison_358siconos-eps-converted-to.pdf

(b)

./comparison_figs/state_comparison_700event-eps-converted-to.pdf

(c)

./comparison_figs/state_comparison_700siconos-eps-converted-to.pdf

(d)

Figure 14.3: State space comparison using SICONOS platform. (a) rpm=358. Event Driven (b) rpm=358.
Time Stepping (h = 1e−4)(c) rpm=700. Event Driven (d) rpm=700. Time Stepping (h = 1e−4) {Fig:state_comparison}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 91/98

./comparison_figs/impact_map_660event-eps-converted-to.pdf

(a)

./comparison_figs/impact_map_660siconos-eps-converted-to.pdf

(b)

./comparison_figs/stroboscopic_map_660event-eps-converted-to.pdf

(c)

./comparison_figs/stroboscopic_map_660siconos-eps-converted-to.pdf

(d)

Figure 14.4: Attractors comparison using SICONOS platform at rpm=660. (a) Impact map. (Event
Driven) (b) Impact Map. Time Stepping (h = 1e−4)(a) Stroboscopic map. (Event Driven) (b) Strobo-
scopic Map. Time Stepping (h = 1e−4) {Fig:attractor_comparison}

file DevNotes.tex – 2018-03-14 11:18

Chapter 15

Quartic Formulation

15.0.1 Slidding ?

It consists in findingα > 0 and R ∈ ∂Kµ such that −α
(

0
RT

)
= MR + q. That is :

 M +

 0 0 0
0 α 0
0 0 α

  R + q = 0 (15.1) {eq_quartic1}

15.0.1.a RT is on a conic

The first line of the system 15.1 and the R ∈ ∂Kµ is the intersection between a plan and a cone in R3,
endeed:

µRN =‖ RT ‖
M11

µ
‖ RT ‖= −q1 −M12RT1 −M13RT2

(15.2) {eq_quartic2}

That is:
µ2R2

N = (R2
T1 + R2

T1)
M2

11
µ2 (R2

T1 + R2
T1) = (−q1 −M12RT1 −M13RT2)

2 (15.3) {eq_quartic2}

That means that RT is contained in a conic, focus and directrice are:

D : q1 + M12RT1 + M13RT2 = 0
f ocus : O
M2

11
µ2 Dist(O, RT)

2 = Dist(D, RT)
2(M2

12 + M2
13)

Dist(O, RT)

Dist(D, RT)
=
µ
√
(M2

12 + M2
13)

M11
= e

(15.4) {eq_quartic3}

The parametric equation is:
RT1 = rcos(θ)
RT2 = rsin(θ)
r =

p
1 + ecos(θ−φ)

(15.5) {eq_quartic4}

With p an simple expression of M11, M12, M13, andφ a constant angle between D and (O, RT1)

92

Siconos Development team – Notes 93/98

15.0.1.b The two last line of the system 15.1

‖ RT ‖
µ

M̃1. +

(
M̃ +

(
α 0
0 α

))
RT + q̃ = 0 (15.6) {eq_quartic5}

M̃ is symetric, so it exists a unitary matrix V such that VM̃VT =

(
d1 0
0 d2

)
. One can get:

‖ RT ‖
µ

VM̃1. + V
(

M̃ +

(
α 0
0 α

))
VTVRT + Vq̃ = 0 (15.7) {eq_quartic6}

Rename:
‖ R̄T ‖
µ

M̄1. +

(
d1 +α 0

0 d2 +α

)
RT + q̄ = 0 (15.8) {eq_quartic7}

In the plan, either V is a rotation or a symetrie. So R̄T = VRT is a conic with the same focus and a
rotated directrice, it means that it existsφ1 such that :

R̄T1 = rcos(θ)
R̄T2 = rsin(θ)
r =

p
1 + ecos(θ−φ1)

(15.9) {eq_quartic8}

The equation 15.8 is :
(d1 +α)R̄T1 = −q̄1 + a1 ‖ RT ‖
(d2 +α)R̄T2 = −q̄2 + a2 ‖ RT ‖

(15.10) {eq_quartic9}

The case (R̄T1 = 0 or R̄T2 = 0) has to be examine. We try to eliminate alpha:

d1R̄T1R̄T2 +αR̄T1R̄T2 = −q̄1R̄T2 + a1R̄T2 ‖ RT ‖
d2R̄T1R̄T2 +αR̄T1R̄T2 = −q̄2R̄T1 + a2R̄T1 ‖ RT ‖

(15.11) {eq_quartic10}

that leads to:
(d1 − d2)R̄T1R̄T2 = −q̄1R̄T2 + q̄2R̄T1 + (a1R̄T2 − a2R̄T1) ‖ RT ‖ (15.12) {eq_quartic10}

The parametric expression of R̄T leads to:

(d1 − d2)r2cos(θ)sin(θ) = −q̄1rsin(θ) + q̄2rcos(θ) + r(a1rsin(θ)− a2rcos(θ))
ie:(d1 − d2)rcos(θ)sin(θ) = −q̄1sin(θ) + q̄2cos(θ) + r(a1sin(θ)− a2cos(θ))

(15.13) {eq_quartic11}

with the expression of r:

(d1 − d2)
p

1 + ecos(θ−φ1)
cos(θ)sin(θ) =

−q̄1sin(θ) + q̄2cos(θ) +
p

1 + ecos(θ−φ1)
(a1sin(θ)− a2cos(θ))

ie:(d1 − d2)pcos(θ)sin(θ) =
(1 + ecos(θ−φ1))(−q̄1sin(θ) + q̄2cos(θ)) + p(a1sin(θ)− a2cos(θ))

ie:(d1 − d2)pcos(θ)sin(θ) =
(1 + e(cos(θ)cos(φ1) + sin(θ)sin(φ1)))(−q̄1sin(θ) + q̄2cos(θ)) + p(a1sin(θ)− a2cos(θ))

ie:(d1 − d2)pcos(θ)sin(θ)+
(1 + ecos(θ)cos(φ1) + esin(θ)sin(φ1))(q̄1sin(θ)− q̄2cos(θ)) + p(−a1sin(θ) + a2cos(θ)) = 0

(15.14) {eq_quartic12}

rename :
Acos(θ)2 + Bsin(θ)2 + Csin(θ)cos(θ) + Dsin(θ) + Ecos(θ) = 0 (15.15) {eq_quartic13}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 94/98

with
A = −eq̄2cos(φ1)
B = eq̄1sin(φ1)
C = (d1 − d2)p + ecos(φ1)q̄1 − esin(φ1)q̄2
D = q̄1 − pa1
E = −q̄2 + pa2

(15.16) {eq_quartic12}

rename : Using the following set of unknown :

t = tan(θ/2)

sin(θ) =
2t

1 + t2

cos(θ) =
1− t2

1 + t2

(15.17) {eq_quartic14}

leads to:

A
(1− t2)2

1 + t2 + B
4t2

1 + t2 + C
2t(1− t2)

1 + t2 + D2t + E(1− t2) = 0

ie:A(1− t2)2 + 4Bt2 + C2t(1− t2) + 2Dt(1 + t2) + E(1− t2)(1 + t2) = 0

ie:P4 = A− E P3 = −2C + 2D P2 = 4B− 2A P1 = 2C + 2D P0 = A + E

(15.18) {eq_quartic13}

Finally, we get 4 possible values for RT , checking the sign ofα and RN selects the solutions.

15.0.1.c case RT12 = 0

From 15.10, RT1 leads to:

‖ RT ‖= |R̄T2| =
q̄1

a1

R̄T =

 0

± q̄1

a1

 (15.19) {eq_quartic14}

From 15.10, RT2 leads to:

‖ RT ‖= |R̄T1| =
q̄2

a2

R̄T =

 ± q̄2

a2
0

 (15.20) {eq_quartic14}

From R̄T , we have to check the coherence with the equation 15.9. If it is on the conic, we compute R,
and the sign condition of the equation 15.1 must be check.

file DevNotes.tex – 2018-03-14 11:18

Chapter 16

Alart–Curnier Formulation

16.1 Reduced formulation to local variables.

16.1.1 Formulation

Let us start with
Φ1(U, P) = −Uk+1 + ŴPk+1 + Ufree

Φ2(U, P) = PN − projIRa
+
(PN − ρN ◦ (UN + e ◦UN,k))

Φ3(U, P) = PT − projD̂(PN ,UN)
(PT − ρT ◦ UT)

(16.1) {eq:AC-L7}

where the modified friction disk for a contactα is

D̂α(PαN,k+1, UαN,k+1) = D(µ(projIR+
(PαN,k+1 − ρ

α
N (UαN,k+1 + eαUαN,k))). (16.2) {eq:AC-L3}

16.1.2 Structure of the Jacobians

Let us denote the one element of the generalized Jacobian by H(U, P) ∈ ∂Φ(U, P) which has the struc-
ture

H(U, P) =



−I 0 ŴNN ŴNT

0 −I ŴTN ŴTT

∂UNΦ2(U, P) 0 ∂PNΦ2(U, P) 0

∂UNΦ3(U, P) ∂UTΦ3(U, P) ∂PNΦ3(U, P) ∂PTΦ3(U, P)


(16.3) {eq:AC-L6}

16.1.3 Computation of the gradients

Let us consider the single contact case.

Computation of the gradients of Φ2

Φ2(U, P) = PN − projIRa
+
(PN − ρN(UN + eUN,k)) (16.4) {eq:AC-T1}

• If PN − ρN(UN + eUN,k) ≥ 0, we get

Φ2(U, P) = +ρN(UN + eUN,k) (16.5) {eq:AC-T2}

95

Siconos Development team – Notes 96/98

and
∂UNΦ2(U, P) = +ρN

∂PNΦ2(U, P) = 0 (16.6) {eq:AC-T3}

• If PN − ρN(UN + eUN,k) < 0, we get
Φ2(U, P) = PN (16.7) {eq:AC-T4}

and
∂UNΦ2(U, P) = 0

∂PNΦ2(U, P) = 1 (16.8) {eq:AC-T5}

Computation of the gradients of Φ3

Φ3(U, P) = PT − projD̂(PN ,UN)
(PT − ρTUT) (16.9) {eq:AC-TT1}

• If ‖PT − ρTUT‖ ≤ µmax(0, PN − ρN(UN + eUN,k)) , we get

Φ3(U, P) = +ρTUT (16.10) {eq:AC-TT2}

and
∂UNΦ3(U, P) = 0

∂PNΦ3(U, P) = 0

∂UTΦ3(U, P) = +ρT

∂PTΦ3(U, P) = 0

(16.11) {eq:AC-TT3}

• If ‖PT − ρTUT‖ > µmax(0, PN − ρN(UN + eUN,k)) , we get

Φ3(U, P) = PT −µmax(0, PN − ρN(UN + eUN,k))
PT − ρTUT

‖PT − ρTUT‖
(16.12) {eq:AC-TT4}

– If PN − ρN(UN + eUN,k) ≤ 0, we get

Φ3(U, P) = PT (16.13) {eq:AC-TT5}

and
∂UNΦ3(U, P) = 0

∂PNΦ3(U, P) = 0

∂UTΦ3(U, P) = 0

∂PTΦ3(U, P) = I2

(16.14) {eq:AC-TT6}

– If PN − ρN(UN + eUN,k) > 0, we get

Φ3(U, P) = PT −µ(PN − ρN(UN + eUN,k))
PT − ρTUT

‖PT − ρTUT‖
(16.15) {eq:AC-TT7}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 97/98

and

∂UNΦ3(U, P) = µρN

PT − ρTUT

‖PT − ρTUT‖
WARNING case was not taken into account

∂PNΦ3(U, P) = −µ PT − ρTUT

‖PT − ρTUT‖

∂UTΦ3(U, P) = µρT(PN − ρN(UN + eUN,k))Γ(PT − ρTUT)

∂PTΦ3(U, P) = I2 −µ(PN − ρN(UN + eUN,k))Γ(PT − ρTUT)

(16.16) {eq:AC-TT8}

16.1.4 Rearranging the cases

TO BE COMPLETED

16.2 Formulation with global variables.

16.2.1 Formulation

Let us start with
Ψa

1(v, U, P) = −M̂vk+1 + HPk+1 + q

Ψb
1(v, U, P) = −Uk+1 + H>vk+1 + b

Ψ2(v, U, P) = PN − projIRa
+
(PN − ρN ◦ (UN + e ◦UN,k))

Ψ3(v, U, P) = PT − projD̂(PN ,UN)
(PT − ρT ◦ UT)

(16.17) {eq:GAC-L1}

where the modified friction disk for a contactα is

D̂α(PαN,k+1, UαN,k+1) = D(µ(projIR+
(PαN,k+1 − ρ

α
N (UαN,k+1 + eαUαN,k))). (16.18) {eq:GAC-L2}

16.2.2 Structure of the Jacobians

Let us denote the one element of the generalized Jacobian by H(v, U, P) ∈ ∂Ψ(s, U, P) which has the
structure

H(v, U, P) =



−M̂ 0 0 HN HT

H>N −I 0 0 0

H>T 0 −I 0 0

0 ∂UNΨ2(v, U, P) 0 ∂PNΨ2(v, U, P) 0

0 ∂UNΨ3(v, U, P) ∂UTΨ3(v, U, P) ∂PNΨ3(v, U, P) ∂PTΨ3(v, U, P)


(16.19) {eq:GAC-L3}

We clearly have
∂UΨ2(v, U, P) = ∂UΦ2(U, P)
∂PΨ2(v, U, P) = ∂PΦ2(U, P)
∂UΨ3(v, U, P) = ∂UΦ3(U, P)
∂PΨ3(v, U, P) = ∂PΦ3(U, P)

(16.20) {eq:equivalentJacobian}

file DevNotes.tex – 2018-03-14 11:18

Siconos Development team – Notes 98/98

and we get

H(v, U, P) =



−M̂ 0 0 HN HT

H>N −I 0 0 0

H>T 0 −I 0 0

0 ∂UNΦ2(U, P) 0 ∂PNΦ2(U, P) 0

0 ∂UNΦ3(U, P) ∂UTΦ3(U, P) ∂PNΦ3(U, P) ∂PTΦ3(U, P)


(16.21) {eq:GAC-L4}

16.2.3 Simplification ?

Since the second line Ψb
1 is linear, we should be able to derive a reduced Jacobian using the chain rule.

Let us define Ψ̃
Ψ̃(v, P) = Ψ(v, H>v + b, P) (16.22) {eq:chainrule}

Ψ̃1(v, P) = −M̂vk+1 + HPk+1 + q

Ψ̃2(v, P) = PN − projIRa
+
(PN − ρN ◦ (H>N v + bN + e ◦UN,k))

Ψ̃3(v, P) = PT − projD̂(PN ,UN)
(PT − ρT ◦ (H>T v + bT))

(16.23) {eq:GAC-L5}

Chain rule
∂vΨ̃2,3(v, P) = ∂vΨ2,3(v, H>v + b, P)

= H>N ∂UNΦ2,3(H>v + b, P) + H>T ∂UTΦ2,3(H>v + b, P)
(16.24) {eq:chainrule1}

H(v, P) =



−M̂ HN HT

H>N ∂UNΦ2(H>v + b, P) ∂PNΦ2(H>v + b, P) 0

H>N ∂UNΦ3(H>v + b, P)
+H>T ∂UTΦ3(H>v + b, P)

∂PNΦ3(H>v + b, P) ∂PTΦ3(H>v + b, P)


(16.25) {eq:GAC-L6}

discussion

• Formulae has to be checked carefully

• I do not known if there an interest in the simplification. With sparse matrices, it is perhaps easier
to deal with (16.21)

References

[1] O. Brüls and A. Cardona. On the use of Lie group time integrators in multibody dynamics. ASME
Journal of Computational and Nonlinear Dynamics, 5(031002), 2010.

[2] Arieh Iserles, Hans Z Munthe-Kaas, Syvert P Nørsett, and Antonella Zanna. Lie-group methods.
Acta Numerica 2000, 9:215–365, 2000.

[3] B. Owren and B. Welfert. The Newton iteration on Lie groups. BIT, 40(1):121–145, 2000.

[4] V. S. Varadarajan. Lie groups, Lie algebras, and their representations, volume 102 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1984. Reprint of the 1974 edition.

file DevNotes.tex – 2018-03-14 11:18

