Package pal.math
Class GeneralizedDEOptimizer
java.lang.Object
pal.math.MultivariateMinimum
pal.math.GeneralizedDEOptimizer
Provides an general interface to the DifferentialEvolution class that is not
tied to a certain number of parameters (as DifferentialEvolution is). Works but
creating a new DiffentialEvolution engine when presented with a new number of
parameters. All the actual optimisation work is handled by DifferentialEvolution.,
- Version:
- $Id: GeneralizedDEOptimizer.java,v 1.8 2003/05/30 08:51:10 matt Exp $
- Author:
- Matthew Goode
-
Nested Class Summary
Nested classes/interfaces inherited from class pal.math.MultivariateMinimum
MultivariateMinimum.Factory
-
Field Summary
Fields inherited from class pal.math.MultivariateMinimum
maxFun, numFun, numFuncStops
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionstatic final MultivariateMinimum.Factory
Generate a MultivariateMinimum.Factory for an GeneralizedDEOptimiser with a population size proportional to the size of the problemstatic final MultivariateMinimum.Factory
generateFactory
(int populationSize) Generate a MultivariateMinimum.Factory for an GeneralizedDEOptimiser with a set population sizevoid
optimize
(MultivariateFunction f, double[] xvec, double tolfx, double tolx) The actual optimization routine It finds a minimum close to vector x when the absolute tolerance for each parameter is specified.void
optimize
(MultivariateFunction f, double[] xvec, double tolfx, double tolx, MinimiserMonitor monitor) The actual optimization routine It finds a minimum close to vector x when the absolute tolerance for each parameter is specified.Methods inherited from class pal.math.MultivariateMinimum
copy, findMinimum, findMinimum, findMinimum, stopCondition
-
Constructor Details
-
GeneralizedDEOptimizer
public GeneralizedDEOptimizer() -
GeneralizedDEOptimizer
public GeneralizedDEOptimizer(int populationSize)
-
-
Method Details
-
optimize
The actual optimization routine It finds a minimum close to vector x when the absolute tolerance for each parameter is specified.- Specified by:
optimize
in classMultivariateMinimum
- Parameters:
f
- multivariate functionxvec
- initial guesses for the minimum (contains the location of the minimum on return)tolfx
- absolute tolerance of function valuetolx
- absolute tolerance of each parameter
-
optimize
public void optimize(MultivariateFunction f, double[] xvec, double tolfx, double tolx, MinimiserMonitor monitor) The actual optimization routine It finds a minimum close to vector x when the absolute tolerance for each parameter is specified.- Overrides:
optimize
in classMultivariateMinimum
- Parameters:
f
- multivariate functionxvec
- initial guesses for the minimum (contains the location of the minimum on return)tolfx
- absolute tolerance of function valuetolx
- absolute tolerance of each parametermonitor
- A monitor object that receives information about the minimising process (for display purposes)
-
generateFactory
Generate a MultivariateMinimum.Factory for an GeneralizedDEOptimiser with a set population size- Parameters:
populationSize
- The set population size
-
generateFactory
Generate a MultivariateMinimum.Factory for an GeneralizedDEOptimiser with a population size proportional to the size of the problem
-